Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 19(1): 75-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885882

RESUMO

Essentials How the tissue factor-factor VIIa complex selects between different substrates is not well understood. We investigated a serine loop in tissue factor and its role in substrate selectivity. The tissue factor serine loop is selective for factor X over factor IX. Substrate selectivity is facilitated by differential regulation of the nearby tissue factor exosite. ABSTRACT: Background The tissue factor-factor VIIa (TF-FVIIa) complex is the physiologic activator of blood clotting and plays a major role in many thrombotic diseases. TF-FVIIa drives clotting through proteolytic cleavage of its major protein substrates, factor IX (FIX) and factor X (FX). However, it remains unclear how TF-FVIIa exhibits selectivity between these substrates. We previously showed that TF residues adjacent to the putative substrate binding site of TF ("exosite") facilitate FX activation, but the role of these residues in substrate selectivity had not been tested. Objectives We hypothesized that a TF serine loop (residues S160-S163) mediates substrate selectivity by the TF-FVIIa complex. Methods We generated TF serine loop and exosite mutants. The mutants were tested in FIX and FX enzyme activation assays as well as thrombin generation assays. Results Changes in the length of the serine loop affected rates of FIX and FX activation very differently. FX activation was decreased by up to 200-fold when the loop length was changed by just one residue. In contrast, FIX activation was largely unaffected. Substrate selectivity was also detected in thrombin generation assays. Activation assays with TF serine loop and exosite double mutants revealed that the serine loop has no effect on the exosite during FIX activation. In contrast, the serine loop regulates the exosite during FX activation. Conclusions Our results provide new insights into how the TF-FVIIa complex actively selects between its major protein substrates, which is mediated by a TF serine loop.


Assuntos
Fator VIIa , Tromboplastina , Fator IX , Fator X , Humanos , Serina
2.
PLoS One ; 12(6): e0178752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575120

RESUMO

Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The 'U three protein' (UTP) complexes and snoRNP particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5'-end of the pre-ribosomal RNA (5'-ETS). This oligomeric complex predominantly consists of ß-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic ß-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal ß-propeller as relevant for protein integrity and potentially Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5'-ETS RNA from the internally hidden 5'-end up to the region that hybridizes to the 3'-hinge sequence of U3 snoRNA and validate a specific Utp4/5'-ETS interaction by CRAC analysis.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Biogênese de Organelas , Precursores de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Chaetomium/genética , Chaetomium/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Precursores de RNA/química , Ribonucleoproteínas/química , Ribossomos/ultraestrutura , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...