Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 167: 92-104, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116965

RESUMO

Second-harmonic generation (SHG) is a biophysical tool that senses ligand-induced conformational changes in biomolecules. The Biodesy Delta™ has been developed as a high-throughput screening platform to monitor conformational changes in proteins and oligonucleotides by SHG to support drug discovery efforts. This work will outline (1) an overview of this technology, (2) detailed protocols for optimizing screening-ready SHG assays on RNA targets, (3) practical considerations for developing robust and informative SHG measurements, and (4) a case study that demonstrates the application of these recommendations on an RNA target. The previously published theophylline aptamer SHG assay [1] was further optimized to maximize the assay window between the positive control (theophylline) and the negative control (caffeine). Optimization of this assay provides practical considerations for building a robust SHG assay on an RNA target, including testing for specific tethering of the conjugate to the surface as well as testing tool compound response stability, reversibility, and concentration-dependence/affinity. A more robust, better-performing theophylline aptamer SHG assay was achieved that would be more appropriate for conducting a screen.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/efeitos dos fármacos , Cafeína/química , Humanos , Ligantes , RNA/química , Teofilina/química , Teofilina/farmacologia
2.
Biol Open ; 7(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037883

RESUMO

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

3.
Biochim Biophys Acta ; 1844(10): 1784-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064783

RESUMO

Members of the DRE-TIM metallolyase superfamily rely on an active-site divalent cation to catalyze various reactions involving the making and breaking of carbon-carbon bonds. While the identity of the metal varies, the binding site is well-conserved at the superfamily level with an aspartic acid and two histidine residues acting as ligands to the metal. Previous structural and bioinformatics results indicate that the metal can adopt an alternate architecture through the addition of an asparagine residue as a fourth ligand. This asparagine residue is strictly conserved in all members of the DRE-TIM metallolyase superfamily except fungal homocitrate synthase (HCS-lys) where it is replaced with isoleucine. The role of this additional metal ligand in α-isopropylmalate synthase from Mycobacterium tuberculosis (MtIPMS) has been investigated using site-directed mutagenesis. Substitution of the asparagine ligand with alanine or isoleucine results in inactive enzymes with respect to α-isopropylmalate formation. Control experiments suggest that the substitutions have not drastically affected the enzyme's structure indicating that the asparagine residue is essential for catalysis. Interestingly, all enzyme variants retained acetyl CoA hydrolysis activity in the absence of α-ketoisovalerate, similar to the wild-type enzyme. In contrast to the requirement of magnesium for α-isopropylmalate formation, hydrolytic activity could be inhibited by the addition of magnesium chloride in wild-type, D81E, and N321A MtIPMS, but not in the other variants studied. Attempts to rescue loss of activity in N321I MtIPMS by mimicking the fungal HCS active site through the D81E/N321I double variant were unsuccessful. This suggests epistatic constraints in evolution of function in IPMS and HCS-lys enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...