Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(6): e2250246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015057

RESUMO

The proprotein convertase subtilisin/kexins (PCSKs) regulate biological actions by cleaving immature substrate proteins. The archetype PCSK, FURIN, promotes the pathogenicity of viruses by proteolytically processing viral proteins. FURIN has also important regulatory functions in both innate and adaptive immune responses but its role in the CD8+ CTLs remains enigmatic. We used a T-cell-specific FURIN deletion in vivo to demonstrate that FURIN promotes host response against the CTL-dependent lymphocytic choriomeningitis virus by virtue of restricting viral burden and augmenting interferon gamma (IFNG) production. We also characterized Furin KO CD8+ T cells ex vivo, including after their activation with FURIN regulating cytokines IL12 or TGFB1. Furin KO CD8+ T cells show an inherently activated phenotype characterized by the upregulation of effector genes and increased frequencies of CD44+ , TNF+ , and IFNG+ cells. In the activated CTLs, FURIN regulates the productions of IL2, TNF, and GZMB and the genes associated with the TGFBR-signaling pathway. FURIN also controls the expression of Eomes, Foxo1, and Bcl6 and the levels of ITGAE and CD62L, which implies a role in the development of CTL memory. Collectively, our data suggest that the T-cell expressed FURIN is important for host responses in viral infections, CTL homeostasis/activation, and memory development.


Assuntos
Coriomeningite Linfocítica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T CD8-Positivos , Furina/genética , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica , Memória Imunológica
2.
Nat Commun ; 12(1): 5376, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508086

RESUMO

Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Infecções por Retroviridae/imunologia , Animais , Medula Óssea , COVID-19 , Citocinas , HIV , Infecções por HIV , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Retroviridae , Infecções por Retroviridae/virologia , SARS-CoV-2 , Carga Viral
4.
Artigo em Inglês | MEDLINE | ID: mdl-29254975

RESUMO

Natural killer (NK) cells are components of innate immunity mediating defense at early times after viral infections. Their cytokine production and cell-mediated cytotoxicity functions overlap those of CD8 T cells elicited later during primary adaptive immune responses, but the populations are distinguished by their basal states and activating receptors as well as the kinetics of their responses. Demonstration of long-lived NK cells has led to speculation on the potential for inducing these to contribute to immunological memory. Conversely, activated CD8 T cells can acquire responses to innate cytokines and, as a result, have the potential to contribute to innate immunity. These observations beg the question: what is required to be a player in innate and adaptive immunity?


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Memória Imunológica , Células Matadoras Naturais/fisiologia , Vacinação , Animais , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária
5.
J Interferon Cytokine Res ; 36(12): 671-680, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27617757

RESUMO

The interferon lambda (IFN-λ) cytokines have well-known antiviral properties, yet their contribution to immune regulation is not well understood. Epithelial cells represent the major target cell of IFN-λ; peripheral blood mononuclear cells are generally considered nonresponsive, with the exception of plasmacytoid dendritic cells (pDCs). In this study we aimed to define the potential for discrete subpopulations of cells to directly respond to IFN-λ. Analysis of peripheral blood leukocytes reveals that, while pDCs uniformly express the highest levels of IFN-λ receptor, a small proportion of B cells and monocytes also express the receptor. Nevertheless, B cells and monocytes respond poorly to IFN-λ stimulation in vitro, with minimal STAT phosphorylation and interferon-stimulated gene (ISG) induction observed. We confirm that pDCs respond to IFN-λ in vitro, upregulating their expression of pSTAT1, pSTAT3, and pSTAT5. However, we found that pDCs do not upregulate pSTAT6 in response to IFN-λ treatment. Our results highlight unique aspects of the response to IFN-λ and confirm that while the IFN-λ receptor is expressed by a small proportion of several different circulating immune cell lineages, under normal conditions only pDCs respond to IFN-λ stimulation with robust STAT phosphorylation and ISG induction. The difference in STAT6 responsiveness of pDCs to type I and type III interferons may help explain the divergence in their biological activities.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Interferons/farmacologia , Janus Quinases/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antígenos CD/metabolismo , Antivirais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon-alfa/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Fosforilação
6.
Med Microbiol Immunol ; 204(3): 345-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25850988

RESUMO

Innate immunity defends against infection but also mediates immunoregulatory effects shaping innate and adaptive responses. Studies of murine cytomegalovirus (MCMV) infections have helped elucidate the mechanisms inducing, as well as the elicited soluble and cellular networks contributing to, innate immunity. Specialized receptors are engaged by infection-induced structures to stimulate production of key innate cytokines. These then stimulate cytokine and cellular responses such as activation of natural killer (NK) cells to mediate elevated killing by type 1 interferon (IFN) and/or to produce the pro-inflammatory and antiviral cytokine IFN-γ by interleukin 12 (IL-12). An inter-systemic loop, with IL-6 inducing glucocorticoid release, negatively regulates these early cytokine responses. As infections advance into periods of overlapping innate and adaptive responses, however, the cells are intrinsically conditioned to modify the biological effects of exposure to individual cytokines. Some pathways are turned off to inhibit an existing, whereas others are broadened for acquisition of a new, response function. Remarkably, extended NK cell proliferation during MCMV infection is associated with epigenetic modifications shifting the state of the inhibitory cytokine IL-10 gene from closed to open and results in their becoming equipped to produce this cytokine. When induced, NK cell IL-10 negatively regulates the magnitude of adaptive responses to protect against immune pathology. Thus, innate immunoregulatory cytokine networks are integral to pro-inflammatory and defense functions, but responding cells have the flexibility to undergo cell intrinsic conditioning with changing network characteristics to result in a new negative immunoregulatory function, and consequently, both promote beneficial and limit detrimental immune responses.


Assuntos
Citocinas/metabolismo , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Imunomodulação , Muromegalovirus/imunologia , Imunidade Adaptativa , Animais , Glucocorticoides/biossíntese , Infecções por Herpesviridae/virologia , Imunidade Inata , Interleucina-10/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais
7.
mBio ; 5(5): e01978-14, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25336459

RESUMO

The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. Importance: Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Interferon gama/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Fator de Transcrição STAT4/metabolismo , Animais , Infecções por Arenaviridae/imunologia , Infecções por Citomegalovirus/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Muromegalovirus/imunologia
8.
J Immunol ; 193(9): 4477-84, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25261477

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of NK cells, lymphocytes that play key roles in antiviral and antitumor immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell proinflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFN-γ, which is important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, upregulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFN-γ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Ativação Enzimática , Expressão Gênica , Glicólise , Granzimas/genética , Granzimas/metabolismo , Interferon gama/biossíntese , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Poli I-C/farmacologia
9.
PLoS One ; 9(7): e101503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999993

RESUMO

In recent years members of the tripartite motif-containing (TRIM) family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR)- and RIG-I-like receptor (RLR)-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG) as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ) and TRAF family member-associated NF-κB activator (TANK). Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-ß production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C) treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems.


Assuntos
Autoantígenos/metabolismo , Imunidade Inata , Interferon beta/biossíntese , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírus/imunologia , Autoantígenos/química , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferon beta/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Proteólise , Receptores Imunológicos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/deficiência , Ubiquitinação
10.
J Immunol ; 193(1): 354-63, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907347

RESUMO

Constitutively found at high frequencies, the role for NK cell proliferation remains unclear. In this study, a shift in NK cell function from predominantly producing IFN-γ, a cytokine with proinflammatory and antimicrobial functions, to producing the immunoregulatory cytokine IL-10 was defined during extended murine CMV infection. The response occurred at times subsequent to IL-12 production, but the NK cells elicited acquired responsiveness to IL-12 and IL-21 for IL-10 production. Because neither IL-12 nor IL-21 was required in vivo, however, additional pathways appeared to be available to promote NK cell IL-10 expression. In vitro studies with IL-2 to support proliferation and in vivo adoptive transfers into murine CMV-infected mice demonstrated that NK cell proliferation and further division enhanced the change. In contrast to the sustained open profile of the IFN-γ gene, NK cells responding to infection acquired histone modifications in the IL-10 gene indicative of changing from a closed to an open state. The IL-10 response to IL-12 was proliferation dependent ex vivo if the NK cells had not yet expanded in vivo but independent if they had. Thus, a novel role for proliferation in supporting changing innate cell function is reported.


Assuntos
Proliferação de Células , Infecções por Herpesviridae/imunologia , Imunidade Inata , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Animais , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-12/genética , Interleucina-12/imunologia , Interleucinas/genética , Interleucinas/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Transgênicos
11.
JAKSTAT ; 2(1): e23504, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058795

RESUMO

Differential use of cellular and molecular components shapes immune responses, but understanding of how these are regulated to promote defense and health during infections is still incomplete. Examples include signaling from members of the Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) cytokine family. Following receptor stimulation, individual JAK-STAT cytokines have preferences for particular key STAT molecules to lead to specific cellular responses. Certain of these cytokines, however, can conditionally activate alternative STATs as well as elicit pleiotropic and paradoxical effects. Studies examining basal and infection conditions are revealing intrinsic and induced cellular differences in various intracellular STAT concentrations to control the biological consequences of cytokine exposure. The system can be likened to changing partners at a dance based on competition and relative availability, and sets a framework for understanding the particular conditions promoting subset biological functions of cytokines as needed during evolving immune responses to infections.

12.
Blood ; 121(14): 2669-77, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23365458

RESUMO

Mutations in the transcription factor GATA2 underlie the syndrome of monocytopenia and B- and natural killer (NK)-cell lymphopenia associated with opportunistic infections and cancers. In addition, patients have recurrent and severe viral infections. NK cells play a critical role in mediating antiviral immunity. Human NK cells are thought to mature in a linear fashion, with the CD56(bright) stage preceding terminal maturation to the CD56(dim) stage, considered the most enabled for cytotoxicity. Here we report an NK cell functional defect in GATA2-deficient patients and extend this genetic lesion to what is considered to be the original NK cell-deficient patient. In most cases, GATA2 deficiency is accompanied by a severe reduction in peripheral blood NK cells and marked functional impairment. The NK cells detected in peripheral blood of some GATA2-deficient patients are exclusively of the CD56(dim) subset, which is recapitulated on in vitro NK cell differentiation. In vivo, interferon α treatment increased NK cell number and partially restored function but did not correct the paucity of CD56(bright) cells. Thus, GATA2 is required for the maturation of human NK cells and the maintenance of the CD56(bright) pool in the periphery. Defects in GATA2 are a novel cause of profound NK cell dysfunction.


Assuntos
Antígeno CD56/imunologia , Diferenciação Celular/imunologia , Fator de Transcrição GATA2/genética , Células Matadoras Naturais/imunologia , Linfopenia/genética , Antígenos CD34/metabolismo , Antígeno CD56/metabolismo , Citotoxicidade Imunológica/imunologia , Fator de Transcrição GATA2/imunologia , Fator de Transcrição GATA2/metabolismo , Humanos , Imunofenotipagem , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Linfopenia/imunologia , Linfopenia/metabolismo , Células Estromais/citologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Blood ; 120(18): 3718-28, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22968462

RESUMO

Type 1 IFNs can conditionally activate all of the signal transducers and activators of transcription molecules (STATs), including STAT4. The best-characterized signaling pathways use STAT1, however, and type 1 IFN inhibition of cell proliferation is STAT1 dependent. We report that type 1 IFNs can basally stimulate STAT1- and STAT4-dependent effects in CD8 T cells, but that CD8 T cells responding to infections of mice with lymphocytic choriomenigitis virus have elevated STAT4 and lower STAT1 expression with significant consequences for modifying the effects of type 1 IFN exposure. The phenotype was associated with preferential type 1 IFN activation of STAT4 compared with STAT1. Stimulation through the TCR induced elevated STAT4 expression, and STAT4 was required for peak expansion of antigen-specific CD8 T cells, low STAT1 levels, and resistance to type 1 IFN-mediated inhibition of proliferation. Thus, a mechanism is discovered for regulating the consequences of type 1 IFN exposure in CD8 T cells, with STAT4 acting as a key molecule in driving optimal antigen-specific responses and overcoming STAT1-dependent inhibition of proliferation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT4/imunologia , Viroses/imunologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Imunoprecipitação da Cromatina , Citometria de Fluxo , Interferon Tipo I/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais/imunologia , Viroses/metabolismo
14.
J Immunol ; 189(6): 2712-6, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22888135

RESUMO

NK cell expression and use of the IL-2Rα-chain (CD25), required for the high-affinity IL-2R, remain poorly understood. The studies reported in this article demonstrate that infections with murine CMV (MCMV), but not with lymphocytic choriomeningitis virus, induce CD25 on NK cells, along with high levels of IL-12 and IL-18. The cytokines act ex vivo to increase CD25 levels, and IL-12, IL-12R, and STAT4, but not the NK activating receptor Ly49H, are required for peak induction in vivo. All examined NK cell populations are driven into proliferation and incorporate BrdU in response to high ex vivo concentrations of IL-2, but only those from MCMV infection respond to low ex vivo concentrations of IL-2. The numbers of NK cells elicited during MCMV infection are reduced by IL-2 neutralization. Thus, a link between innate and adaptive immunity is established by which composition of innate cytokine responses sets up to promote NK cell use of a factor supporting adaptive responses.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interleucina-12/fisiologia , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-2/biossíntese , Animais , Linhagem Celular , Células Cultivadas , Humanos , Células Matadoras Naturais/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Ligação Proteica/imunologia , Receptores de Interleucina-2/metabolismo
16.
Curr Opin Virol ; 1(6): 497-512, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22180766

RESUMO

Natural killer (NK) cells mediate innate defense against viral infections, but the mechanisms in place to access their functions as needed during diverse challenges while limiting collateral damage are poorly understood. Recent molecular characterization of effects mediated through infection-induced inhibitory/activating NK receptor-ligand pairs and cytokines are providing new insights into pathways regulating their responses and revealing unexpected consequences for NK cell subset effects, maintenance, proliferation and function through times overlapping with adaptive and long-lived immunity. The observations define flexible pathways for experience-induced 'conditioning' and challenge narrowly defined roles for NK cells and innate immunity as first responders with prescribed functions. They suggest that individual experiences as well as genes influence the innate immune resources available to fight off an infection.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Inata/genética , Receptores de Células Matadoras Naturais/genética , Receptores de Células Matadoras Naturais/imunologia , Viroses/virologia
17.
mBio ; 2(4)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21828218

RESUMO

UNLABELLED: Natural killer (NK) cells are equipped to innately produce the cytokine gamma interferon (IFN-γ) in part because they basally express high levels of the signal transducer and activator of transcription 4 (STAT4). Type 1 interferons (IFNs) have the potential to activate STAT4 and promote IFN-γ expression, but concurrent induction of elevated STAT1 negatively regulates access to the pathway. As a consequence, it has been difficult to detect type 1 IFN stimulation of NK cell IFN-γ during viral infections in the presence of STAT1 and to understand the evolutionary advantage for maintaining the pathway. The studies reported here evaluated NK cell responses following infections with lymphocytic choriomeningitis virus (LCMV) in the compartment handling the earliest events after infection, the peritoneal cavity. The production of type 1 IFNs, both IFN-α and IFN-ß, was shown to be early and of short duration, peaking at 30 h after challenge. NK cell IFN-γ expression was detected with overlapping kinetics and required activating signals delivered through type 1 IFN receptors and STAT4. It took place under conditions of high STAT4 levels but preceded elevated STAT1 expression in NK cells. The IFN-γ response reduced viral burdens. Interestingly, increases in STAT1 were delayed in NK cells compared to other peritoneal exudate cell (PEC) populations. Taken together, the studies demonstrate a novel mechanism for stimulating IFN-γ production and elucidate a biological role for type 1 IFN access to STAT4 in NK cells. IMPORTANCE: Pathways regulating the complex and sometimes paradoxical effects of cytokines are poorly understood. Accumulating evidence indicates that the biological consequences of type 1 interferon (IFN) exposure are shaped by modifying the concentrations of particular STATs to change access to the different signaling molecules. The results of the experiments presented conclusively demonstrate that NK cell IFN-γ can be induced through type 1 IFN and STAT4 at the first site of infection during a period with high STAT4 but prior to induction of elevated STAT1 in the cells. The response mediates a role in viral defense. Thus, a very early pathway to and source of IFN-γ in evolving immune responses to infections are identified by this work. The information obtained helps resolve long-standing controversies and advances the understanding of mechanisms regulating key type 1 IFN functions, in different cells and compartments and at different times of infection, for accessing biologically important functions.


Assuntos
Interferon Tipo I/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Humanos , Interferon Tipo I/biossíntese , Interleucina-18/imunologia , Interleucina-18/metabolismo , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
19.
Nat Immunol ; 11(12): 1080-2, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21079631

RESUMO

Natural killer cells have emerged as key components of innate immunity with critical antimicrobial functions. New work showing that they can also be accessed by vaccination to deliver antigen-specific memory responses and protect against subsequent viral infections challenges the traditional distinctions made between innate and adaptive immunity.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Animais , Humanos , Memória Imunológica/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...