Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612490

RESUMO

Endometriosis is one of the leading pathologies of the reproductive system of women of fertile age, which shows changes in cell metabolism in the lesions. We conducted a study of the cellular respiration according to the polarography and the mRNA content of the main metabolic proteins using qRT-PCR of intraoperative endometrial biopsies from patients in the control group and with different localizations of endometriosis (adenomyosis, endometrioma, pelvic peritoneum). In biopsy samples of patients with endometriomas and pelvic peritoneum endometriotic lesions, the rate of oxygen absorption was significantly reduced, and, moreover, in the extragenital case, there was a shift to succinate utilization. The mRNA content of the cytochrome c, cytochrome c oxidase, and ATP synthase was also reduced, but hexokinase HK2 as well as pyruvate kinase were significantly higher than in the control. These oxidative phosphorylation and gene expression profiles suggest the Warburg effect and a shift in metabolism toward glycolysis. For adenomyosis, on the contrary, cellular respiration was significantly higher than in the control group due to the terminal region of the respiratory chain, ATP synthase, and its mRNA was increased as well. These data allow us to suggest that the therapeutic strategies of endometriosis based on modulation energy metabolism should take lesion localization into account.


Assuntos
Adenomiose , Endometriose , Humanos , Feminino , Endometriose/genética , Respiração Celular , Biópsia , RNA Mensageiro/genética , Trifosfato de Adenosina
2.
Life (Basel) ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137934

RESUMO

The purpose of this study was to assess oxidative phosphorylation (OXPHOS) in mouse ovaries, determine the relative content of proteins that form the respiratory chain complexes and the main structures of the cytoskeleton, and determine the mRNA of the corresponding genes after hindlimb suspension for 96 h. After hindlimb suspension, the maximum rate of oxygen uptake increased by 133% (p < 0.05) compared to the control due to the complex I of the respiratory chain. The content of mRNA of genes encoding the main components of the respiratory chain increased (cyt c by 78%, cox IV by 56%, ATPase by 69%, p < 0.05 compared with the control). The relative content of cytoskeletal proteins that can participate in the processes of transport and localization of mitochondria does not change, with the exception of an increase in the content of alpha-tubulin by 25% (p < 0.05) and its acetylated isoform (by 36%, p < 0.05); however, the mRNA content of these cytoskeletal genes did not differ from the control. The content of GDF9 mRNA does not change after hindlimb suspension. The data obtained show that short-term exposure to simulated weightlessness leads to intensification of metabolism in the ovaries.

3.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497128

RESUMO

The effect of space flight factors and the subsequent adaptation to the Earth's gravity on oocytes is still poorly understood. Studies of mammalian oocytes in space present significant technical difficulties; therefore, the fruit fly Drosophila melanogaster is a convenient test subject. In this study, we analyzed the structure of the oocytes of the fruit fly Drosophila melanogaster, the maturation of which took place under space flight conditions (the "Cytomehanarium" experiment on the Russian Segment of the ISS during the ISS-67 expedition). The collection of the oocytes began immediately after landing and continued for 12 h. The flies were then transferred onto fresh agar plates and oocyte collection continued for the subsequent 12 h. The stiffness of oocytes was determined by atomic force microscopy and the content of the cytoskeletal proteins by Western blotting. The results demonstrated a significant decrease in the stiffness of oocytes in the flight group compared to the control (26.5 ± 1.1 pN/nm vs. 31.0 ± 1.8 pN/nm) against the background of a decrease in the content of some cytoskeletal proteins involved in the formation of microtubules and microfilaments. This pattern of oocyte structure leads to the disruption of cytokinesis during the cleavage of early embryos.


Assuntos
Drosophila melanogaster , Voo Espacial , Animais , Oócitos , Microtúbulos , Proteínas do Citoesqueleto , Mamíferos
4.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825268

RESUMO

The role of the Earth's gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids.


Assuntos
Drosophila melanogaster/citologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Simulação de Ausência de Peso/métodos , Administração Oral , Animais , Respiração Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Campos Magnéticos , Masculino , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , Motilidade dos Espermatozoides , Espermatozoides/efeitos dos fármacos , Ausência de Peso
5.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709012

RESUMO

For deep space exploration, reproductive health must be maintained to preserve the species. However, the mechanisms underlying the effect of changes in gravity on male germ cells remain poorly understood. The aim of this study was to determine the effect of simulated micro- and hypergravity on mouse sperm motility and the mechanisms of this change. For 1, 3 and 6 h, mouse sperm samples isolated from the caudal epididymis were subjected to simulated microgravity using a random position machine and 2g hypergravity using a centrifuge. The experimental samples were compared with static and dynamic controls. The sperm motility and the percentage of motile sperm were determined using microscopy and video analysis, cell respiration was determined by polarography, the protein content was assessed by Western blotting and the mRNA levels were determined using qRT-PCR. The results indicated that hypergravity conditions led to more significant changes than simulated microgravity conditions: after 1 h, the speed of sperm movement decreased, and after 3 h, the number of motile cells began to decrease. Under the microgravity model, the speed of movement did not change, but the motile spermatozoa decreased after 6 h of exposure. These changes are likely associated with a change in the structure of the microtubule cytoskeleton, and changes in the energy supply are an adaptive reaction to changes in sperm motility.


Assuntos
Hipergravidade , Motilidade dos Espermatozoides , Espermatozoides/citologia , Simulação de Ausência de Peso , Animais , Respiração Celular , Células Cultivadas , Masculino , Camundongos , Proteínas/análise , Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Espermatozoides/metabolismo , Ausência de Peso
6.
Sci Rep ; 9(1): 9730, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278362

RESUMO

To analyze the effect of gravity on the structure of germinal tissues, we examined tissues of the testes and duct deferens of mice that were exposed to space flight conditions for 21-24 days (experiment Rodent Research-4, SpaceX-10 mission, February 2017, USA). We evaluated the levels of cytoskeletal proteins, sperm-specific proteins, and epigenetic events; in particular, we evaluated levels of 5-hydroxymethylcytosine and of enzymes that regulate DNA methylation/demethylation. We did not detect changes in the levels of cytoskeletal proteins, sperm-specific proteins, DNA-methylases, DNA demethylases, DNA acetylases, or histone deacetylases. However, there were changes at the gene expression level. In particular, there was an increase in the demethylase Tet2 and a decrease in the histone deacetylase Hdac1. These gene expression changes may be of key importance during the early period of readaptation since they could lead to an increase in the expression of target genes.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Histona Desacetilase 1/genética , Proteínas Proto-Oncogênicas/genética , Testículo/metabolismo , Ducto Deferente/metabolismo , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histona Desacetilases/genética , Masculino , Camundongos , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/metabolismo , Voo Espacial
7.
PLoS One ; 11(4): e0153650, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073851

RESUMO

The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C¼ and «HS¼ or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group "HS" compared with that of group "C" by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group "C+L" by 1.5-fold and more than 2-fold, respectively, compared with the levels in group "C". Moreover, in group "HS+L", the mRNA content did not change in these genes compared with the levels in group "C+L", and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm.


Assuntos
Citoesqueleto/efeitos dos fármacos , Lecitinas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Simulação de Ausência de Peso , Actinas/metabolismo , Animais , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo
8.
PLoS One ; 9(4): e96395, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24780915

RESUMO

UNLABELLED: The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. RESULTS: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6-12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18-24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers.


Assuntos
Actinina/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Miócitos Cardíacos/metabolismo , Actinina/análise , Animais , Fenômenos Biomecânicos , Células Cultivadas , Regulação da Expressão Gênica , Gravidade Alterada , Elevação dos Membros Posteriores , Masculino , Mecanotransdução Celular , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA