Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 8(3)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973499

RESUMO

In this research, we investigated the influence of feedwater ionic strength on diffusion of divalent ions through a hollow-fiber nanofiltration membrane. The results indicated that solute flux of magnesium was increased as a result of elevating the ionic strength in the feedwater. Specifically, the feedwater ionic strength was observed to have a nonlinear impact on the diffusion of magnesium during the nanofiltration process, which was under-predicted by the homogeneous solution diffusion (HSD) model. This result suggested that elevating the feedwater ionic strength had reduced the strength of the electrostatic double layer at the membrane surface. We then developed a modification of the HSD model (referred to as the HSD-IS model) which incorporated an empirical term related to the effect of feedwater ionic strength (IS) on diffusion of magnesium. The root mean squared error of the HSD-IS model was improved by 77% as compared to the HSD model, which did not incorporate a term related to feedwater ionic strength. This improvement suggested that feedwater ionic strength should be considered when modeling hardness removal during nanofiltration.

2.
Environ Toxicol ; 31(4): 489-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25348491

RESUMO

When found in excess, phosphorus (P) has been linked to surface water eutrophication. As a result, adsorbents are now used in P remediation efforts. However, possible secondary toxicological impacts on the use of new materials for P removal from surface water have not been reported. This study evaluated the toxicity of adsorbent materials used in the removal of P from surface water including: fly ash, bottom ash, alum sludge, a proprietary mix of adsorbents, and a proprietary engineered material. Toxicity screening was conducted by performing solid-liquid extractions (SLEs) followed by the bacterial bioluminescence inhibition test with a Microtox® M500. Of the materials tested, the samples extracted at lower pH levels demonstrated higher toxicity. The material exhibiting the most toxic response was the iron and aluminum oxide coated engineered material registering a 66-67% 15-min EC50 level for pH 4 and 5 SLEs, respectively. However, for SLEs prepared at pH 7, toxic effects were not detected for this engineered material. Fly ash and bottom ash demonstrated between 82 and 84% 15-min EC50 level, respectively, for pH 4 SLE conditions. Dried alum sludge and the proprietary mix of adsorbents were classified as having little to no toxicity.


Assuntos
Compostos de Alúmen/toxicidade , Óxido de Alumínio/toxicidade , Bactérias/efeitos dos fármacos , Cinza de Carvão/toxicidade , Compostos Férricos/toxicidade , Resíduos Industriais/efeitos adversos , Adsorção , Bactérias/metabolismo , Luminescência , Fósforo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...