Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 5(3)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671579

RESUMO

Application of Gold nanoparticles and Cold Atmospheric plasma as a targeted therapeutic adjunct has been widely investigated separately in cancer therapy. Gold nanoparticles, with their biocompatibility, lower cytotoxicity and superior efficacy, are becoming substantially more significant in modern cancer therapy. Likewise, cold atmospheric plasma, with rich reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS), is being explored to selectively target and kill cancer cells, making them a promising anticancer agent. Recent scientific studies have shown that there is a potential synergy between these two aspects. Induction of apoptosis/necrosis due to oxidative stress may be a probable mechanism of their cytotoxic effect. The synergetic effect of the two therapeutic approaches could be tantamount to maximized targeted efficacy on the treatment of diseases like cancer.

2.
Nanoscale Res Lett ; 11(1): 537, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27914092

RESUMO

Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).

3.
Chem Cent J ; 10: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042206

RESUMO

BACKGROUND: Nanoparticles (NPs) are receiving increasing interest in biomedical research owing to their comparable size with biomolecules, novel properties and easy surface engineering for targeted therapy, drug delivery and selective treatment making them a better substituent against traditional therapeutic agents. ZnO NPs, despite other applications, also show selective anticancer property which makes it good option over other metal oxide NPs. ZnO NPs were synthesized by chemical precipitation technique, and then surface modified using Triton X-100. Comparative study of cytotoxicity of these modified and unmodified NPs on breast cancer cell line (MDA-MB-231) and normal cell line (NIH 3T3) were carried out. RESULTS: ZnO NPsof average size 18.67 ± 2.2 nm and Triton-X modified ZnO NPs of size 13.45 ± 1.42 nm were synthesized and successful characterization of synthesized NPs was done by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), transmission electron microscopy (TEM) analysis. Surface modification of NPs was proved by FT-IR analysis whereas structure and size by XRD analysis. Morphological analysis was done by TEM. Cell viability assay showed concentration dependent cytotoxicity of ZnO NPs in breast cancer cell line (MDA-MB-231) whereas no positive correlation was found between cytotoxicity and increasing concentration of stress in normal cell line (NIH 3T3) within given concentration range. Half maximum effective concentration (EC50) value for ZnO NPs was found to be 38.44 µg/ml and that of modified ZnO NPs to be 55.24 µg/ml for MDA-MB-231. Crystal violet (CV) staining image showed reduction in number of viable cells in NPs treated cell lines further supporting this result. DNA fragmentation assay showed fragmented bands indicating that the mechanism of cytotoxicity is through apoptosis. CONCLUSIONS: Although use of surfactant decreases particle size, toxicity of modified ZnO NPs were still less than unmodified NPs on MDA-MB-231 contributed by biocompatible surface coating. Both samples show significantly less toxicity towards NIH 3T3 in concentration independent manner. But use of Triton-X, a biocompatible polymer, enhances this preferentiality effect. Since therapeutic significance should be analyzed through its comparative effect on both normal and cancer cells, possible application of biocompatible polymer modified nanoparticles as therapeutic agent holds better promise.Graphical abstractSurface coating, characterization and comparative in vitro cytotoxicity study on MDA-MB 231 and NIH 3T3 of ZnO NPs showing enhanced preferentiality by biocompatible surface modification.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29942384

RESUMO

Nanoparticles, with their selective targeting capabilities and superior efficacy, are becoming increasingly important in modern cancer therapy and starting to overshadow traditional cancer therapies such as chemotherapy radiation and surgery. ZnO nanoparticles, with their unique properties such as biocompatibility, high selectivity, enhanced cytotoxicity and easy synthesis, may be a promising anticancer agent. Zinc, as one of the major trace elements of the human body and co-factor of more than 300 mammalian enzymes, plays an important role in maintaining crucial cellular processes including oxidative stress, DNA replication, DNA repair, cell cycle progression and apoptosis. Thus, it is evident that an alteration in zinc levels in cancer cells can cause a deleterious effect. Research has shown that low zinc concentration in cells leads to the initiation and progression of cancer and high zinc concentration shows toxic effects. Zinc-mediated protein activity disequilibrium and oxidative stress through reactive oxygen species (ROS) may be the probable mechanism of this cytotoxic effect. The selective localization of ZnO nanoparticles towards cancer cells due to enhanced permeability and retention (EPR) effect and electrostatic interaction and selective cytotoxicity due to increased ROS present in cancer cells show that ZnO nanoparticles can selectively target and kill cancer cells, making them a promising anticancer agent.

5.
Drug Deliv Transl Res ; 5(3): 268-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809936

RESUMO

A supercritical carbon dioxide (SCC)-assisted process was developed to synthesize protein-supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile-initiated in situ polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90 ± 1 °C, 1200 psi over 6 h in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35 ± 1 °C over additional 2 h in SCC. The formation of PNCs was ascertained through ultraviolet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.


Assuntos
Portadores de Fármacos/química , Nanopartículas Metálicas/química , Metacrilatos/química , Modelos Químicos , Nanocompostos/química , Preparações Farmacêuticas/química , Proteínas/química , Animais , Bovinos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/análise , Composição de Medicamentos , Técnicas Eletroquímicas , Compostos Férricos/química , Cinética , Fenômenos Magnéticos , Magnetometria , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/análise , Proteínas/administração & dosagem , Proteínas/análise , Reprodutibilidade dos Testes , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...