Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 219-228, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150361

RESUMO

Two fluoro-bridged lanthanide-containing metal-organic frameworks (MOFs) were synthesized using 2,2'-bipyridine-4,4'-dicarboxylic acid (BPDC), a fluorinated modulator, and a lanthanide nitrate. The syntheses of MOFs containing Gd3+ or Tb3+ and a closely related MOF structure containing Ho3+, Gd3+, or Tb3+ are presented. The presence of the fluorinated metal chains in these MOFs is shown through single crystal X-ray diffraction, energy dispersion X-ray spectroscopy, 19F nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Magnetic measurements reveal weak antiferromagnetic exchange between the Ln3+ ions mediated by fluoride anions along the zigzag ladder chains present in the crystal structures of these MOFs.

2.
Inorg Chem ; 62(37): 15050-15062, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37677120

RESUMO

Structural studies involving single-crystal and powder X-ray diffraction analysis have been performed on dehydrated coordination networks of the [NixCo1-x(bpy)3][LiCr(ox)3] series, 0 ≤ x ≤ 1, (bpy = 2,2'-bipyridine). The high-symmetry cubic 3D structure of these materials is formed by oxalate anions bridging alternating Cr3+ and Li+ ions into an anionic framework, which contains large cavities that incorporate the [NixCo1-x(bpy)3]2+ cations. Irrespective of the Co/Ni ratio, all of the mixed samples are phase-pure and retain the high-symmetry cubic structure, with the lattice parameters gradually decreasing upon increasing Ni(II) concentration. The influence of the Ni(II) dilution on the magnetic behavior of these materials is substantial. For pure [Co(bpy)3][LiCr(ox)3], a gradual but incomplete thermal spin-crossover is evident due to the effect of the chemical pressure applied by the [LiCr(ox)3]2- framework, which stabilizes the low-spin (LS) 2E state relative to the high-spin (HS) 4T1 state of the Co(II) ion. Upon increasing the Ni(II) content, the spin-crossover becomes even more gradual and incomplete and eventually is not observed for pure [Ni(bpy)3][LiCr(ox)3]. The average spin-crossover temperature increases with the increasing Ni(II) content, suggesting a higher degree of chemical pressure applied by the oxalate framework manifested by changing the ΔE0HL toward positive values. The magnetic behavior of all these framework materials has been explained by the mechanoelastic model, considering different radii for Co and Ni molecules and different interactions between Co-Co sites and Co-Ni sites. The model reproduced the incomplete transition, with the HS residual fraction at 300 K decreasing with increasing Ni concentration, and provided microscopic snapshots of the systems, showing how the existence of impurities prevented the spreading of Co atoms in the HS state.

3.
J Am Chem Soc ; 144(51): 23448-23464, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516873

RESUMO

This work introduces an approach to uncoupling electrons via maximum utilization of localized aromatic units, i.e., the Clar's π-sextets. To illustrate the utility of this concept to the design of Kekulé diradicaloids, we have synthesized a tridecacyclic polyaromatic system where a gain of five Clar's sextets in the open-shell form overcomes electron pairing and leads to the emergence of a high degree of diradical character. According to unrestricted symmetry-broken UCAM-B3LYP calculations, the singlet diradical character in this core system is characterized by the y0 value of 0.98 (y0 = 0 for a closed-shell molecule, y0 = 1 for pure diradical). The efficiency of the new design strategy was evaluated by comparing the Kekulé system with an isomeric non-Kekulé diradical of identical size, i.e., a system where the radical centers cannot couple via resonance. The calculated singlet-triplet gap, i.e., the ΔEST values, in both of these systems approaches zero: -0.3 kcal/mol for the Kekulé and +0.2 kcal/mol for the non-Kekulé diradicaloids. The target isomeric Kekulé and non-Kekulé systems were assembled using a sequence of radical periannulations, cross-coupling, and C-H activation. The diradicals are kinetically stabilized by six tert-butyl substituents and (triisopropylsilyl)acetylene groups. Both molecules are NMR-inactive but electron paramagnetic resonance (EPR)-active at room temperature. Cyclic voltammetry revealed quasi-reversible oxidation and reduction processes, consistent with the presence of two nearly degenerate partially occupied molecular orbitals. The experimentally measured ΔEST value of -0.14 kcal/mol confirms that K is, indeed, a nearly perfect singlet diradical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...