Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(7): e07544, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34345733

RESUMO

The geometry, frontier molecular orbitals (FMOs), vibrational, NBO analysis, and molecular docking simulations of aflatoxins (B1, B2, M1, M2, G1, G2), zearalenone (ZEA) emodin (EMO), alternariol (AOH), alternariol monoethyl ether (AMME), and tenuazonic acid (TeA) mycotoxins have been extensively theoretically studied and discussed based on quantum density functional theory calculations using Gaussian 16 software package. The theoretical computation for the geometry optimization, NBOs, and the molecular docking interaction was conducted using Density Functional Theory with B3LYP/6-31+G(d,p), NBO program, and AutoDock Vina tools respectively. Charge delocalization patterns and second-order perturbation energies of the most interacting natural bond orbitals (NBOs) of these mycotoxins have also been computed and predicted. Interestingly, among the mycotoxins investigated, aflatoxin G1 is seen to give the strongest stabilization energy while Zearalenone shows the highest tendency to accept electron(s) and emodin, an emerging mycotoxin gave the best binding pose within the androgen receptor pocket with a mean binding affinity of -7.40 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...