Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 37-47, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079390

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of ß-amyloid (Aß), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aß levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aß levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aß levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aß levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aß concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo
2.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986983

RESUMO

Astrocyte endfeet enwrap brain vasculature, forming a boundary for perivascular glymphatic flow of fluid and solutes along and across the astrocyte endfeet into the brain parenchyma. To determine whether astrocytes may sense and respond to the shear forces generated by glymphatic flow, we examined intracellular calcium (Ca 2+ ) changes evoked in astrocytes to brief fluid flow applied in calibrated microfluidic chambers. Shear stresses < 20 dyn/cm 2 failed to evoke Ca 2+ responses in the absence of albumin, but cells responded to shear stress below 1 dyn/cm 2 when as little as 5 µM albumin was present in flow medium. A role for extracellular matrix in mechanotransduction was indicated by reduced sensitivity after degradation of heparan sulfate proteoglycan. Sphingosine-1-phosphate (S1P) amplified shear responses in the absence of albumin, whereas mechanosensitivity was attenuated by the S1P receptor blocker fingolimod. Piezo1 participated in the transduction as revealed by blockade by the spider toxin GsMTX and amplification by the chemical modulator Yoda1, even in absence of albumin or S1P. Our findings that astrocytes are exquisitely sensitive to shear stress and that sensitivity is greatly amplified by albumin concentrations encountered in normal and pathological CSF predict that perivascular astrocytes are responsive to glymphatic shear stress and that responsiveness is augmented by elevated CSF protein. S1P receptor signaling thus establishes a setpoint for Piezo1 activation that is finely tuned to coincide with albumin level in CSF and to the low shear forces resulting from glymphatic flow. Graphical abstract: Astrocyte endfoot responds to glymphatic shear stress when albumin is present. Mechanism involves sphingosine-1-phosphate (S1P) binding to its receptor (S1PR), activating phospholipase C (PLC) and thereby sensitizing the response of Piezo1 to flow. Ca 2+ influx triggers Ca 2+ release from intracellular stores and further downstream signaling, thereby modulating parenchymal perfusion. Illustration created using BioRender.com.

3.
Sci Rep ; 8(1): 828, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339791

RESUMO

Microglia are known to engage in physical interactions with neurons. However, our understanding of the detailed mechanistic regulation of microglia-neuron interactions is incomplete. Here, using high resolution two photon imaging, we investigated the regulation of NMDA receptor-induced microglia-neuron physical interactions. We found that the GluN2A inhibitor NVPAAM007, but not the GluN2B inhibitor ifenprodil, blocked the occurrence of these interactions. Consistent with the well-known developmental regulation of the GluN2A subunit, these interactions are absent in neonatal tissues. Furthermore, consistent with a preferential synaptic localization of GluN2A subunits, there is a differential sensitivity of their occurrence between denser (stratum radiatum) and less dense (stratum pyramidale) synaptic sub-regions of the CA1. Finally, consistent with differentially expressed GluN2A subunits in the CA1 and DG areas of the hippocampus, these interactions could not be elicited in the DG despite robust microglial chemotactic capabilities. Together, these results enhance our understanding of the mechanistic regulation of NMDA receptor-dependent microglia-neuronal physical interactions phenomena by the GluN2A subunit that may be relevant in the mammalian brain during heightened glutamatergic neurotransmission such as epilepsy and ischemic stroke.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Feminino , Ácido Glutâmico/farmacologia , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
4.
Proc Natl Acad Sci U S A ; 114(27): 7148-7153, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28533369

RESUMO

Presenilin 1 (PS1), the catalytic subunit of the γ-secretase complex, cleaves ßCTF to produce Aß. We have shown that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 decreases Aß levels by increasing ßCTF degradation through autophagy. Here, we report the molecular mechanism by which PS1 modulates ßCTF degradation. We show that PS1 phosphorylated at Ser367, but not nonphosphorylated PS1, interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an antiamyloidogenic function, promoting autophagosome-lysosome fusion and increasing ßCTF degradation. Drugs designed to increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/genética , Autofagossomos/metabolismo , Lisossomos/metabolismo , Presenilina-1/genética , Animais , Anexina A2/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Fosforilação , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Transdução de Sinais
5.
J Neurosci ; 34(32): 10528-40, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100587

RESUMO

Microglia are highly dynamic immune cells of the CNS and their dynamism is proposed to be regulated by neuronal activities. However, the mechanisms underlying neuronal regulation of microglial dynamism have not been determined. Here, we found an increased number of microglial primary processes in the hippocampus during KA-induced seizure activity. Consistently, global glutamate induced robust microglial process extension toward neurons in both brain slices and in the intact brain in vivo. The mechanism of the glutamate-induced microglial process extension involves the activation of neuronal NMDA receptors, calcium influx, subsequent ATP release, and microglial response through P2Y12 receptors. Seizure-induced increases in microglial process numbers were also dependent on NMDA receptor activation. Finally, we found that P2Y12 KO mice exhibited reduced seizure-induced increases in microglial process numbers and worsened KA-induced seizure behaviors. Our results elucidate the molecular mechanisms underlying microglia-neuron communication that may be potentially neuroprotective in the epileptic brain.


Assuntos
Hipocampo/patologia , Microglia/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Estado Epiléptico/patologia , Animais , Receptor 1 de Quimiocina CX3C , Extensões da Superfície Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/citologia , Neurônios/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Receptores de Quimiocinas/genética , Receptores Purinérgicos P2Y12/deficiência , Bloqueadores dos Canais de Sódio/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...