Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2023: 7274309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698730

RESUMO

Background: Salmonella species are frequently linked to biofilm-associated infections. Biofilm formation intensively reduces the efficacy of antibiotics and the host immune system. Therefore, new therapeutic strategies are needed. Thymol, the main monoterpene phenol found in Thymus vulgaris, has been shown to possess potent antibiofilm activity. Our previous findings showed that thymol enhanced the antibiofilm activity of aminoglycosides against Salmonella enterica serovars. However, the clinical potential of thymol has not yet been realized due to its low aqueous solubility and high volatility. Nano-based drug delivery systems have emerged as a novel strategy to resolve these problems. This study aimed to investigate the antibiofilm activity of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles (TH-NPs) and their synergism when used in combination with amikacin antibiotics. Methods: The antibacterial activity of TH-NPs was evaluated using the broth microdilution method. Biofilm formation and antibiofilm assays were performed by the miniaturized microtiter plate method. Interaction studies between TH-NPs and amikacin against biofilm were determined using the checkerboard method. Results: TH-NPs exhibited antibacterial activity against planktonic cells of S. enterica serovars that were more efficient (8 to 32 times) than free thymol alone. S. Typhimurium and S. Choleraesuis isolates were considered strong biofilm producers. The combination of TH-NPs with amikacin showed synergistic activity in the inhibition and eradication of S. enterica serovar biofilm. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of amikacin were reduced by 32 to 128-fold when used in combination with TH-NPs. Time-kill kinetic studies showed that the combination of TH-NPs with amikacin possesses bactericidal action. Conclusion: This study suggests that the combination of TH-NPs with amikacin can be an alternative to overcome biofilm-associatedSalmonella diseases and therefore should be further explored as a model to search for new antibiofilm drugs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34745275

RESUMO

Biofilms related to human infection have high levels of pathogenicity due to their resistance to antimicrobial agents. The discovery of antibiofilm agents is necessary. One approach to overcome this problem is the use of antibiotics agents' combination. This study aimed to determine the efficacy of the combination of natural products thymol and piperine with three aminoglycosides antibiotics, amikacin, kanamycin, and streptomycin against biofilm-forming Salmonella enterica. The microtiter plate assay method was used to evaluate the biofilm-producing capacity of the isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined by the broth microdilution method. The inhibition of biofilm formation and biofilm eradication was determined using the microtiter broth method. The checkerboard method was used to determine the combined effects of natural products with aminoglycosides antibiotics. All the tested isolates showed various levels of biofilm formation. Overall, combinations provided 43.3% of synergy in preventing the biofilm formation and 40% of synergy in eradicating preformed biofilms, and in both cases, no antagonism was observed. The combination of thymol with kanamycin showed a synergistic effect with 16- to 32-fold decrease of the minimum biofilm eradication concentration (MBEC) of kanamycin. The interaction of piperine with amikacin and streptomycin also revealed a synergistic effect with 16-fold reduction of the minimum biofilm inhibitory concentration (MBIC). The combination of thymol with the three antibiotics showed a strong synergistic effect in both inhibiting the biofilm formation and eradicating the preformed biofilm. This study demonstrates that thymol and piperine potentiate the antibiofilm activity of amikacin, kanamycin, and streptomycin. These combinations are a promising approach therapeutic to overcome the problem of Salmonella enterica biofilm-associated infections. In addition, these combinations could help reduce the concentration of individual components, thereby minimizing the nephrotoxicity of aminoglycosides antibiotics.

3.
Can J Infect Dis Med Microbiol ; 2021: 7029944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790281

RESUMO

BACKGROUND: Thymol and piperine are two naturally occurring bioactive compounds with several pharmacological activities. In this study, their antibiofilm potential either alone or in combination with three aminoglycoside antibiotics was evaluated against a biofilm of Klebsiella pneumoniae. METHODS: Determination of antimicrobial susceptibility was performed using the broth microdilution method. Biofilm formation was evaluated by the microtiter plate method. Antibiofilm activity was determined using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium-bromide (MTT) assay. The combination studies were performed by the checkerboard microdilution method. RESULTS: The minimum biofilm inhibitory concentration (MBIC) of streptomycin was reduced by 16- to 64-fold when used in combination with thymol, while the MBIC of kanamycin was reduced by 4-fold when combined with piperine. The minimum biofilm eradication concentration (MBEC) values of streptomycin, amikacin, and kanamycin were, respectively, 16- to 128-fold, 4- to 128-fold, and 8- to 256-fold higher than the planktonic minimum inhibitory concentration (MIC). Thymol combined with streptomycin or kanamycin showed synergic effects against the preformed biofilm with 16- to 64-fold reduction in the minimum biofilm eradication concentration values of each antibiotic in combination. Piperine acted also synergically with kanamycin with an 8- to 16-fold reduction in the minimum biofilm eradication concentration values of kanamycin in combination. CONCLUSION: The association of thymol with antibiotics showed a strong synergistic effect both in the inhibition of biofilm formation and the destruction of the preformed biofilm of K. pneumoniae. This study suggests that a combination of thymol with streptomycin, amikacin, or kanamycin could be a promising alternative therapy to overcome the problem of K. pneumoniae biofilm-associated infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...