Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Oper Neurosurg (Hagerstown) ; 23(1): 22-30, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726926

RESUMO

BACKGROUND: Virtual reality surgical simulators provide detailed psychomotor performance data, allowing qualitative and quantitative assessment of hand function. The nondominant hand plays an essential role in neurosurgery in exposing the operative area, assisting the dominant hand to optimize task execution, and hemostasis. Outlining expert-level nondominant hand skills may be critical to understand surgical expertise and aid learner training. OBJECTIVE: To (1) provide validity for the simulated bimanual subpial tumor resection task and (2) to use this simulation in qualitative and quantitative evaluation of nondominant hand skills for bipolar forceps utilization. METHODS: In this case series study, 45 right-handed participants performed a simulated subpial tumor resection using simulated bipolar forceps in the nondominant hand for assisting the surgery and hemostasis. A 10-item questionnaire was used to assess task validity. The nondominant hand skills across 4 expertise levels (neurosurgeons, senior trainees, junior trainees, and medical students) were analyzed by 2 visual models and performance metrics. RESULTS: Neurosurgeon median (range) overall satisfaction with the simulated scenario was 4.0/5.0 (2.0-5.0). The visual models demonstrated a decrease in high force application areas on pial surface with increased expertise level. Bipolar-pia mater interactions were more focused around the tumoral region for neurosurgeons and senior trainees. These groups spent more time using the bipolar while interacting with pia. All groups spent significantly higher time in the left upper pial quadrant than other quadrants. CONCLUSION: This work introduces new approaches for the evaluation of nondominant hand skills which may help surgical trainees by providing both qualitative and quantitative feedback.


Assuntos
Neoplasias Encefálicas , Neurocirurgia , Treinamento por Simulação , Realidade Virtual , Neoplasias Encefálicas/cirurgia , Humanos , Neurocirurgiões , Neurocirurgia/educação
2.
Oper Neurosurg (Hagerstown) ; 23(1): 31-39, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726927

RESUMO

BACKGROUND: The methodology of assessment and training of surgical skills is evolving to deal with the emergence of competency-based training. Artificial neural networks (ANNs), a branch of artificial intelligence, can use newly generated metrics not only for assessment performance but also to quantitate individual metric importance and provide new insights into surgical expertise. OBJECTIVE: To outline the educational utility of using an ANN in the assessment and quantitation of surgical expertise. A virtual reality vertebral osteophyte removal during a simulated surgical spine procedure is used as a model to outline this methodology. METHODS: Twenty-one participants performed a simulated anterior cervical diskectomy and fusion on the Sim-Ortho virtual reality simulator. Participants were divided into 3 groups, including 9 postresidents, 5 senior residents, and 7 junior residents. Data were retrieved from the osteophyte removal component of the scenario, which involved using a simulated burr. The data were manipulated to initially generate 83 performance metrics spanning 3 categories (safety, efficiency, and motion) of which only the most relevant metrics were used to train and test the ANN. RESULTS: The ANN model was trained on 6 safety metrics to a testing accuracy of 83.3%. The contributions of these performance metrics to expertise were revealed through connection weight products and outlined 2 identifiable learning patterns of technical skills. CONCLUSION: This study outlines the potential utility of ANNs which allows a deeper understanding of the composites of surgical expertise and may contribute to the paradigm shift toward competency-based surgical training.


Assuntos
Osteófito , Realidade Virtual , Inteligência Artificial , Competência Clínica , Humanos , Redes Neurais de Computação
3.
J Neurosurg ; : 1-12, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120309

RESUMO

OBJECTIVE: Understanding the variation of learning curves of experts and trainees for a given surgical procedure is important in implementing formative learning paradigms to accelerate mastery. The study objectives were to use artificial intelligence (AI)-derived metrics to determine the learning curves of participants in 4 groups with different expertise levels who performed a series of identical virtual reality (VR) subpial resection tasks and to identify learning curve differences among the 4 groups. METHODS: A total of 50 individuals participated, 14 neurosurgeons, 4 neurosurgical fellows and 10 senior residents (seniors), 10 junior residents (juniors), and 12 medical students. All participants performed 5 repetitions of a subpial tumor resection on the NeuroVR (CAE Healthcare) platform, and 6 a priori-derived metrics selected using the K-nearest neighbors machine learning algorithm were used to assess participant learning curves. Group learning curves were plotted over the 5 trials for each metric. A mixed, repeated-measures ANOVA was performed between the first and fifth trial. For significant interactions (p < 0.05), post hoc Tukey's HSD analysis was conducted to determine the location of the significance. RESULTS: Overall, 5 of the 6 metrics assessed had a significant interaction (p < 0.05). The 4 groups, neurosurgeons, seniors, juniors, and medical students, showed an improvement between the first and fifth trial on at least one of the 6 metrics evaluated. CONCLUSIONS: Learning curves generated using AI-derived metrics provided novel insights into technical skill acquisition, based on expertise level, during repeated VR-simulated subpial tumor resections, which will allow educators to develop more focused formative educational paradigms for neurosurgical trainees.

4.
Oper Neurosurg (Hagerstown) ; 20(1): 74-82, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970108

RESUMO

BACKGROUND: Virtual reality spine simulators are emerging as potential educational tools to assess and train surgical procedures in safe environments. Analysis of validity is important in determining the educational utility of these systems. OBJECTIVE: To assess face, content, and construct validity of a C4-C5 anterior cervical discectomy and fusion simulation on the Sim-Ortho virtual reality platform, developed by OSSimTechTM (Montreal, Canada) and the AO Foundation (Davos, Switzerland). METHODS: Spine surgeons, spine fellows, along with neurosurgical and orthopedic residents, performed a simulated C4-C5 anterior cervical discectomy and fusion on the Sim-Ortho system. Participants were separated into 3 categories: post-residents (spine surgeons and spine fellows), senior residents, and junior residents. A Likert scale was used to assess face and content validity. Construct validity was evaluated by investigating differences between the 3 groups on metrics derived from simulator data. The Kruskal-Wallis test was employed to compare groups and a post-hoc Dunn's test with a Bonferroni correction was utilized to investigate differences between groups on significant metrics. RESULTS: A total of 21 individuals were included: 9 post-residents, 5 senior residents, and 7 junior residents. The post-resident group rated face and content validity, median ≥4, for the overall procedure and at least 1 tool in each of the 4 steps. Significant differences (P < .05) were found between the post-resident group and senior and/or junior residents on at least 1 metric for each component of the simulation. CONCLUSION: The C4-C5 anterior cervical discectomy and fusion simulation on the Sim-Ortho platform demonstrated face, content, and construct validity suggesting its utility as a formative educational tool.


Assuntos
Realidade Virtual , Simulação por Computador , Discotomia , Humanos
5.
Med Biol Eng Comput ; 58(6): 1357-1367, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279203

RESUMO

This study outlines the first investigation of application of machine learning to distinguish "skilled" and "novice" psychomotor performance during a virtual reality (VR) brain tumor resection task. Tumor resection task participants included 23 neurosurgeons and senior neurosurgery residents as the "skilled" group and 92 junior neurosurgery residents and medical students as the "novice" group. The task involved removing a series of virtual brain tumors without causing injury to surrounding tissue. Originally, 150 features were extracted followed by statistical and forward feature selection. The selected features were provided to 4 classifiers, namely, K-Nearest Neighbors, Parzen Window, Support Vector Machine, and Fuzzy K-Nearest Neighbors. Sets of 5 to 30 selected features were provided to the classifiers. A working point of 15 premium features resulted in accuracy values as high as 90% using the Supprt Vector Machine. The obtained results highlight the potentials of machine learning, applied to VR simulation data, to help realign the traditional apprenticeship educational paradigm to a more objective model, based on proven performance standards. Graphical abstract Using several scenarios of virtual reality neurosurgical tumor resection together with machine learning classifiers to distinguish skill level.


Assuntos
Neoplasias Encefálicas/cirurgia , Procedimentos Neurocirúrgicos/educação , Procedimentos Neurocirúrgicos/métodos , Realidade Virtual , Competência Clínica , Lógica Fuzzy , Humanos , Aprendizado de Máquina , Neurocirurgiões , Neurocirurgia/educação , Máquina de Vetores de Suporte
6.
PLoS One ; 15(2): e0229596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106247

RESUMO

Simulation-based training is increasingly being used for assessment and training of psychomotor skills involved in medicine. The application of artificial intelligence and machine learning technologies has provided new methodologies to utilize large amounts of data for educational purposes. A significant criticism of the use of artificial intelligence in education has been a lack of transparency in the algorithms' decision-making processes. This study aims to 1) introduce a new framework using explainable artificial intelligence for simulation-based training in surgery, and 2) validate the framework by creating the Virtual Operative Assistant, an automated educational feedback platform. Twenty-eight skilled participants (14 staff neurosurgeons, 4 fellows, 10 PGY 4-6 residents) and 22 novice participants (10 PGY 1-3 residents, 12 medical students) took part in this study. Participants performed a virtual reality subpial brain tumor resection task on the NeuroVR simulator using a simulated ultrasonic aspirator and bipolar. Metrics of performance were developed, and leave-one-out cross validation was employed to train and validate a support vector machine in Matlab. The classifier was combined with a unique educational system to build the Virtual Operative Assistant which provides users with automated feedback on their metric performance with regards to expert proficiency performance benchmarks. The Virtual Operative Assistant successfully classified skilled and novice participants using 4 metrics with an accuracy, specificity and sensitivity of 92, 82 and 100%, respectively. A 2-step feedback system was developed to provide participants with an immediate visual representation of their standing related to expert proficiency performance benchmarks. The educational system outlined establishes a basis for the potential role of integrating artificial intelligence and virtual reality simulation into surgical educational teaching. The potential of linking expertise classification, objective feedback based on proficiency benchmarks, and instructor input creates a novel educational tool by integrating these three components into a formative educational paradigm.


Assuntos
Inteligência Artificial , Neurocirurgia/educação , Treinamento por Simulação/métodos , Realidade Virtual , Algoritmos , Neoplasias Encefálicas/cirurgia , Simulação por Computador , Educação Médica/métodos , Feminino , Humanos , Masculino , Máquina de Vetores de Suporte , Cirurgia Assistida por Computador/educação
7.
Oper Neurosurg (Hagerstown) ; 19(1): 65-75, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31832652

RESUMO

BACKGROUND: Virtual reality surgical simulators provide a safe environment for trainees to practice specific surgical scenarios and allow for self-guided learning. Artificial intelligence technology, including artificial neural networks, offers the potential to manipulate large datasets from simulators to gain insight into the importance of specific performance metrics during simulated operative tasks. OBJECTIVE: To distinguish performance in a virtual reality-simulated anterior cervical discectomy scenario, uncover novel performance metrics, and gain insight into the relative importance of each metric using artificial neural networks. METHODS: Twenty-one participants performed a simulated anterior cervical discectomy on the novel virtual reality Sim-Ortho simulator. Participants were divided into 3 groups, including 9 post-resident, 5 senior, and 7 junior participants. This study focused on the discectomy portion of the task. Data were recorded and manipulated to calculate metrics of performance for each participant. Neural networks were trained and tested and the relative importance of each metric was calculated. RESULTS: A total of 369 metrics spanning 4 categories (safety, efficiency, motion, and cognition) were generated. An artificial neural network was trained on 16 selected metrics and tested, achieving a training accuracy of 100% and a testing accuracy of 83.3%. Network analysis identified safety metrics, including the number of contacts on spinal dura, as highly important. CONCLUSION: Artificial neural networks classified 3 groups of participants based on expertise allowing insight into the relative importance of specific metrics of performance. This novel methodology aids in the understanding of which components of surgical performance predominantly contribute to expertise.


Assuntos
Realidade Virtual , Inteligência Artificial , Competência Clínica , Discotomia , Humanos , Redes Neurais de Computação
8.
J Bone Joint Surg Am ; 101(23): e127, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31800431

RESUMO

BACKGROUND: With the emergence of competency-based training, the current evaluation scheme of surgical skills is evolving to include newer methods of assessment and training. Artificial intelligence through machine learning algorithms can utilize extensive data sets to analyze operator performance. This study aimed to address 3 questions: (1) Can artificial intelligence uncover novel metrics of surgical performance? (2) Can support vector machine algorithms be trained to differentiate "senior" and "junior" participants who are executing a virtual reality hemilaminectomy? (3) Can other algorithms achieve a good classification performance? METHODS: Participants from 4 Canadian universities were divided into 2 groups according to their training level (senior and junior) and were asked to perform a virtual reality hemilaminectomy. The position, angle, and force application of the simulated burr and suction instruments, along with tissue volumes that were removed, were recorded at 20-ms intervals. Raw data were manipulated to create metrics to train machine learning algorithms. Five algorithms, including a support vector machine, were trained to predict whether the task was performed by a senior or junior participant. The accuracy of each algorithm was assessed through leave-one-out cross-validation. RESULTS: Forty-one individuals were enrolled (22 senior and 19 junior participants). Twelve metrics related to safety of the procedure, efficiency, motion of the tools, and coordination were selected. Following cross-validation, the support vector machine achieved a 97.6% accuracy. The other algorithms achieved accuracy of 92.7%, 87.8%, 70.7%, and 65.9%, respectively. CONCLUSIONS: Artificial intelligence defined novel metrics of surgical performance and outlined training levels in a virtual reality spinal simulation procedure. CLINICAL RELEVANCE: The significance of these results lies in the potential of artificial intelligence to complement current educational paradigms and better prepare residents for surgical procedures.


Assuntos
Competência Clínica , Educação de Pós-Graduação em Medicina/métodos , Laminectomia/educação , Aprendizado de Máquina , Realidade Virtual , Adulto , Inteligência Artificial , Canadá , Feminino , Humanos , Internato e Residência/métodos , Masculino , Neurocirurgia/educação , Procedimentos Ortopédicos/educação
9.
JAMA Netw Open ; 2(8): e198363, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31373651

RESUMO

Importance: Despite advances in the assessment of technical skills in surgery, a clear understanding of the composites of technical expertise is lacking. Surgical simulation allows for the quantitation of psychomotor skills, generating data sets that can be analyzed using machine learning algorithms. Objective: To identify surgical and operative factors selected by a machine learning algorithm to accurately classify participants by level of expertise in a virtual reality surgical procedure. Design, Setting, and Participants: Fifty participants from a single university were recruited between March 1, 2015, and May 31, 2016, to participate in a case series study at McGill University Neurosurgical Simulation and Artificial Intelligence Learning Centre. Data were collected at a single time point and no follow-up data were collected. Individuals were classified a priori as expert (neurosurgery staff), seniors (neurosurgical fellows and senior residents), juniors (neurosurgical junior residents), and medical students, all of whom participated in 250 simulated tumor resections. Exposures: All individuals participated in a virtual reality neurosurgical tumor resection scenario. Each scenario was repeated 5 times. Main Outcomes and Measures: Through an iterative process, performance metrics associated with instrument movement and force, resection of tissues, and bleeding generated from the raw simulator data output were selected by K-nearest neighbor, naive Bayes, discriminant analysis, and support vector machine algorithms to most accurately determine group membership. Results: A total of 50 individuals (9 women and 41 men; mean [SD] age, 33.6 [9.5] years; 14 neurosurgeons, 4 fellows, 10 senior residents, 10 junior residents, and 12 medical students) participated. Neurosurgeons were in practice between 1 and 25 years, with 9 (64%) involving a predominantly cranial practice. The K-nearest neighbor algorithm had an accuracy of 90% (45 of 50), the naive Bayes algorithm had an accuracy of 84% (42 of 50), the discriminant analysis algorithm had an accuracy of 78% (39 of 50), and the support vector machine algorithm had an accuracy of 76% (38 of 50). The K-nearest neighbor algorithm used 6 performance metrics to classify participants, the naive Bayes algorithm used 9 performance metrics, the discriminant analysis algorithm used 8 performance metrics, and the support vector machine algorithm used 8 performance metrics. Two neurosurgeons, 1 fellow or senior resident, 1 junior resident, and 1 medical student were misclassified. Conclusions and Relevance: In a virtual reality neurosurgical tumor resection study, a machine learning algorithm successfully classified participants into 4 levels of expertise with 90% accuracy. These findings suggest that algorithms may be capable of classifying surgical expertise with greater granularity and precision than has been previously demonstrated in surgery.


Assuntos
Neoplasias Encefálicas/cirurgia , Competência Clínica , Internato e Residência/métodos , Aprendizado de Máquina , Procedimentos Neurocirúrgicos/educação , Treinamento por Simulação/métodos , Realidade Virtual , Adulto , Algoritmos , Inteligência Artificial , Canadá , Feminino , Humanos , Masculino , Procedimentos Neurocirúrgicos/métodos
10.
J Surg Educ ; 76(6): 1681-1690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31202633

RESUMO

OBJECTIVE: Virtual reality simulators track all movements and forces of simulated instruments, generating enormous datasets which can be further analyzed with machine learning algorithms. These advancements may increase the understanding, assessment and training of psychomotor performance. Consequently, the application of machine learning techniques to evaluate performance on virtual reality simulators has led to an increase in the volume and complexity of publications which bridge the fields of computer science, medicine, and education. Although all disciplines stand to gain from research in this field, important differences in reporting exist, limiting interdisciplinary communication and knowledge transfer. Thus, our objective was to develop a checklist to provide a general framework when reporting or analyzing studies involving virtual reality surgical simulation and machine learning algorithms. By including a total score as well as clear subsections of the checklist, authors and reviewers can both easily assess the overall quality and specific deficiencies of a manuscript. DESIGN: The Machine Learning to Assess Surgical Expertise (MLASE) checklist was developed to help computer science, medicine, and education researchers ensure quality when producing and reviewing virtual reality manuscripts involving machine learning to assess surgical expertise. SETTING: This study was carried out at the McGill Neurosurgical Simulation and Artificial Intelligence Learning Centre. PARTICIPANTS: The authors applied the checklist to 12 articles using machine learning to assess surgical expertise in virtual reality simulation, obtained through a systematic literature review. RESULTS: Important differences in reporting were found between medical and computer science journals. The medical journals proved stronger in discussion quality and weaker in areas related to study design. The opposite trends were observed in computer science journals. CONCLUSIONS: This checklist will aid in narrowing the knowledge divide between computer science, medicine, and education: helping facilitate the burgeoning field of machine learning assisted surgical education.


Assuntos
Competência Clínica , Educação de Pós-Graduação em Medicina/métodos , Avaliação Educacional/métodos , Cirurgia Geral/educação , Aprendizado de Máquina , Treinamento por Simulação/métodos , Realidade Virtual , Inteligência Artificial , Guias de Prática Clínica como Assunto
11.
J Rheumatol ; 43(11): 2019-2025, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27585687

RESUMO

OBJECTIVE: Microparticles (MP) are small extracellular vesicles present in body fluids. MP originate from different cellular lineages, principally from platelets in blood, and may expose phosphatidylserine (PS). In systemic lupus erythematosus (SLE), MP harbor immunoglobulin G (IgG), thereby forming MP-containing immune complexes (mpIC). We aimed to verify an association between SLE disease activity, damage, and surrogate markers of atherosclerosis and MP harboring IgG, taking into account the platelet origin and PS exposure of MP. METHODS: MP expressing surface IgG, platelet antigen (CD41+), and PS were quantified using flow cytometry in plasma of 191 women with SLE. Carotid ultrasounds (US) were available in 113 patients. Spearman correlation analysis was used to analyze whether levels of MP were associated with the following outcomes: SLE Disease Activity Index 2000 (SLEDAI-2K), Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI), and carotid US plaques and intima-media thickness (CIMT) as surrogates for vascular damage. RESULTS: We found CD41+ MP harboring IgG present in SLE. A positive correlation was found between SLEDAI-2K and levels of CD41+ MP harboring IgG and exposing (p = 0.027) and non-exposing PS (p = 0.001). Conversely, SDI (p = 0.024) and CIMT (p = 0.016) correlated with concentrations of CD41- MP harboring IgG and exposing PS. Associations were independent of low-density lipoprotein cholesterol level, body mass index, and antimalarial drug use. CONCLUSION: Different subtypes of mpIC are produced in SLE and are associated with distinct clinical characteristics such as disease activity and vascular damage. The assessment of MP subtypes might serve for the design of predictive markers of disease activity and vascular damage in patients.


Assuntos
Espessura Intima-Media Carotídea , Micropartículas Derivadas de Células/imunologia , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Placa Aterosclerótica/diagnóstico por imagem , Adulto , Artérias Carótidas/diagnóstico por imagem , Feminino , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...