Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 218, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388772

RESUMO

Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.


Assuntos
Fígado , Organoides , Tartarugas , Animais , Genoma , Hipóxia/genética , Proteômica , Tartarugas/fisiologia , Organoides/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200101, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34304598

RESUMO

Sex chromosome dosage compensation (SCDC) overcomes gene-dose imbalances that disturb transcriptional networks, as when ZW females or XY males are hemizygous for Z/X genes. Mounting data from non-model organisms reveal diverse SCDC mechanisms, yet their evolution remains obscure, because most informative lineages with variable sex chromosomes are unstudied. Here, we discovered SCDC in turtles and an unprecedented thermosensitive SCDC in eukaryotes. We contrasted RNA-seq expression of Z-genes, their autosomal orthologues, and control autosomal genes in Apalone spinifera (ZZ/ZW) and Chrysemys picta turtles with temperature-dependent sex determination (TSD) (proxy for ancestral expression). This approach disentangled chromosomal context effects on Z-linked and autosomal expression, from lineage effects owing to selection or drift. Embryonic Apalone SCDC is tissue- and age-dependent, regulated gene-by-gene, complete in females via Z-upregulation in both sexes (Type IV) but partial and environmentally plastic via Z-downregulation in males (accentuated at colder temperature), present in female hatchlings and a weakly suggestive in adult liver (Type I). Results indicate that embryonic SCDC evolved with/after sex chromosomes in Apalone's family Tryonichidae, while co-opting Z-gene upregulation present in the TSD ancestor. Notably, Apalone's SCDC resembles pygmy snake's, and differs from the full-SCDC of Anolis lizards who share homologous sex chromosomes (XY), advancing our understanding of how XX/XY and ZZ/ZW systems compensate gene-dose imbalance. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Tartarugas/genética , Animais , Feminino , Masculino , Tartarugas/embriologia
3.
Genes (Basel) ; 11(8)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806747

RESUMO

Recent sequencing and software enhancements have advanced our understanding of the evolution of genomic structure and function, especially addressing novel evolutionary biology questions. Yet fragmentary turtle genome assemblies remain a challenge to fully decipher the genetic architecture of adaptive evolution. Here, we use optical mapping to improve the contiguity of the painted turtle (Chrysemys picta) genome assembly and use de novo fluorescent in situ hybridization (FISH) of bacterial artificial chromosome (BAC) clones, BAC-FISH, to physically map the genomes of the painted and slider turtles (Trachemys scripta elegans). Optical mapping increased C. picta's N50 by ~242% compared to the previous assembly. Physical mapping permitted anchoring ~45% of the genome assembly, spanning 5544 genes (including 20 genes related to the sex determination network of turtles and vertebrates). BAC-FISH data revealed assembly errors in C. picta and T. s. elegans assemblies, highlighting the importance of molecular cytogenetic data to complement bioinformatic approaches. We also compared C. picta's anchored scaffolds to the genomes of other chelonians, chicken, lizards, and snake. Results revealed a mostly one-to-one correspondence between chromosomes of painted and slider turtles, and high homology among large syntenic blocks shared with other turtles and sauropsids. Yet, numerous chromosomal rearrangements were also evident across chelonians, between turtles and squamates, and between avian and non-avian reptiles.


Assuntos
Coloração Cromossômica , Evolução Molecular , Genoma , Cariótipo , Mapeamento Físico do Cromossomo , Tartarugas/genética , Animais , Células Cultivadas , Coloração Cromossômica/métodos , Cromossomos Artificiais Bacterianos , Biologia Computacional/métodos , Bases de Dados Genéticas , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Filogenia , Mapeamento Físico do Cromossomo/métodos , Tartarugas/classificação
4.
Genes (Basel) ; 11(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290488

RESUMO

Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages. Here we focus on turtles, an emerging model group with growing genomic resources. We review karyotypic changes that accompanied the evolution of chromosomal systems of genotypic sex determination (GSD) in chelonians from systems under the control of environmental temperature (TSD). These transitions gave rise to 31 GSD species identified thus far (out of 101 turtles with known sex determination), 27 with a characterized sex chromosome system (13 of those karyotypically). These sex chromosomes are varied in terms of the ancestral autosome they co-opted and thus in their homology, as well as in their size (some are macro-, some are micro-chromosomes), heterogamety (some are XX/XY, some ZZ/ZW), dimorphism (some are virtually homomorphic, some heteromorphic with larger-X, larger W, or smaller-Y), age (the oldest system could be ~195 My old and the youngest < 25 My old). Combined, all data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others. Finally, although the study of dosage compensation and molecular divergence of turtle sex chromosomes has lagged behind research on other aspects of their evolution, this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.


Assuntos
Evolução Molecular , Genoma , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Tartarugas/genética , Animais
5.
J Mol Evol ; 86(1): 11-26, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192334

RESUMO

The evolutionary lability of sex-determining mechanisms across the tree of life is well recognized, yet the extent of molecular changes that accompany these repeated transitions remain obscure. Most turtles retain the ancestral temperature-dependent sex determination (TSD) from which multiple transitions to genotypic sex determination (GSD) occurred independently, and two contrasting hypotheses posit the existence or absence of reversals back to TSD. Here we examined the molecular evolution of the coding regions of a set of gene regulators involved in gonadal development in turtles and several other vertebrates. We found slower molecular evolution in turtles and crocodilians compared to other vertebrates, but an acceleration in Trionychia turtles and at some phylogenetic branches demarcating major taxonomic diversification events. Of all gene classes examined, hormone signaling genes, and Srd5a1 in particular, evolve faster in many lineages and especially in turtles. Our data show that sex-linked genes do not follow a ubiquitous nor uniform pattern of molecular evolution. We then evaluated turtle nucleotide and protein evolution under two evolutionary hypotheses with or without GSD-to-TSD reversals, and found that when GSD-to-TSD reversals are considered, all transitional branches irrespective of direction, exhibit accelerated molecular evolution of nucleotide sequences, while GSD-to-TSD transitional branches also show acceleration in protein evolution. Significant changes in predicted secondary structure that may affect protein function were identified in three genes that exhibited hastened evolution in turtles compared to other vertebrates or in transitional versus non-transitional branches within turtles, rendering them candidates for a key role during SDM evolution in turtles.


Assuntos
Reprodução/genética , Processos de Determinação Sexual/fisiologia , Tartarugas/genética , Animais , Sequência de Bases/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica/genética , Genótipo , Masculino , Filogenia , Cromossomos Sexuais/genética , Análise para Determinação do Sexo/métodos , Processos de Determinação Sexual/genética , Temperatura , Tartarugas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...