Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 17(6): 1203-1214, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34264532

RESUMO

During the 2019-2020 Australian bushfire season, large expanses (~47%) of agricultural and forested land in the Upper Murray River catchment of southeastern (SE) Australia were burned. Storm activity and rainfall following the fires increased sediment loads in rivers, resulting in localized fish kills and widespread water-quality deterioration. We collected water samples from the headwaters of the Murray River for sediment and contaminant analysis and assessed changes in water quality using long-term monitoring data. A robust runoff routing model was used to estimate the effect of fire on sediment loads in the Murray River. Peak turbidity in the Murray River reached values of up to 4200 nephelometric turbidity units (NTU), shown as pitch-black water coming down the river. The increase in suspended solids was accompanied by elevated nutrient concentrations during post-bushfire runoff events. The model simulations demonstrated that the sediment load could be five times greater in the first year after a bushfire than in the prefire condition. It was estimated that Lake Hume, a large reservoir downstream from fire-affected areas, would receive a maximum of 600 000 metric tonnes of sediment per month in the period immediately following the bushfire, depending on rainfall. Total zinc, arsenic, chromium, nickel, copper, and lead concentrations were above the 99% toxicant default guideline values (DGVs) for freshwater ecosystems. It is also likely that increased nutrient loads in Lake Hume will have ongoing implications for algal dynamics, in both the lake and the Murray River downstream. Information from this study provides a valuable basis for future research to support bushfire-related policy developments in fire-prone catchments and the mitigation of postfire water quality and aquatic ecosystem impacts. Integr Environ Assess Manag 2021;17:1203-1214. © 2021 Commonwealth of Australia. Integrated Environmental Assessment and Management © 2021 Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Sedimentos Geológicos , Animais , Austrália , Monitoramento Ambiental , Rios
3.
Chemosphere ; 212: 811-820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30189408

RESUMO

Neutralisation of acid drainage creates metal-rich precipitates that may impact receiving water bodies. This study assessed the fate of over seven years of acid drainage discharges on the sediments of the lower River Murray (Australia), including the potential for periodic water anoxia to enhance risk via reductive dissolution of amorphous (Fe, Mn and co-precipitated and bound metal) oxide phases. With the exception of one site with restricted water exchange, elevated reducible/reactive metal(oid) (Fe, Ni, As, Co, Zn) concentrations were only observed in the localised wetland-riparian area within approximately 100 m of the discharges. Only a minor exceedance of national sediment quality guideline values occurred for Ni. In the main river channel, elevated reactive metal (Fe, Mn, Ni, Zn) concentrations were also only observed less than approximately 100 m from the drainage discharge point. This appears due to (a) rapid neutralisation of pH leading to metal precipitation and deposition in the localised discharge area, and/or (b) dilution of any metal precipitates entering the main channel with natural river sediments, and/or (c) flushing of precipitates downstream during higher flow conditions. The influence of deoxygenation on metal release was profound with large increases in the concentration of dissolved Fe, Mn, Zn, Ni, and As in the overlying water during laboratory experimental simulations. However, given in situ sediment metal contamination is very localised, it appears on a river reach scale that the acid drainage precipitates will not significantly contribute, over and above, the background release of these metals during these conditions.


Assuntos
Metais/química , Rios/química , Poluentes Químicos da Água/análise , Ácidos , Austrália , Concentração de Íons de Hidrogênio , Metais/análise , Metais Pesados/análise , Metais Pesados/química , Compostos Orgânicos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA