Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38133351

RESUMO

The extensive use of biocide surfactant benzalkonium chloride (BAC) during the SARS-CoV-2 pandemic has led to the buildup of this hazardous chemical in waste, surface and groundwater. e The study aims to elucidate whether various low-cost household materials are suitable, in their unmodified and untreated form, to effectively adsorb BAC from its aqueous solutions.. Additionally, if a proper adsorbent is identified, a description of the kinetics and thermodynamics of the process is also targeted. From among the five tested materials, a commercially available white household paper towel was chosen to best satisfy the criteria of low price, large availability, and standardization degree, as well as high adsorption capacity within a fairly short time window needed until equilibrium. Batch experiments were carried out with a commercial mixture of BAC-12 and BAC-14 within a temperature range of 18-45 degrees Celsius, and a 25-100 mg/g BAC/adsorbent initial mass ratio range, respectively. The overall process follows a pseudo-second-order kinetic law, with an apparent activation energy of 73.35 KJ/mole. Both the Langmuir and the Redlich-Peterson isotherms describe the equilibrium data at 298 K well, with a Gibbs free energy of -20.64 KJ/mole. These findings are in agreement with previous reports and suggest a hybrid but chemisorption-dominated process.

2.
Pharmaceutics ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37765225

RESUMO

Aceclofenac-loaded polyvinylpyrrolidone fiber-based amorphous solid dispersion was produced successfully by centrifugal spinning. The solution concentration and rotational speed were optimized to produce the fiber-based drug carrier system, with a determined production rate of 12.7 g/h dry solid fibers. The obtained fibers were bead-free and smooth-surfaced with an average diameter of 7.5 ± 2.5 µm. Gas chromatographic determinations revealed that ethanol, as a residual solvent, was well below the regulatory limit of 0.5%. Differential scanning calorimetric investigation and infrared spectroscopic measurements were used to track the physicochemical changes that intervene during fiber formation in the solid state. The results revealed that the rapid evaporation of the solvent was accompanied by a probable crystalline to amorphous transition of the active substance during centrifugal spinning. In vitro dissolution studies revealed an instantaneous disintegration of the fibrous structure and a rapid release of the active substance, with the microfibrous webs greatly outperforming the crystalline active substance, especially in the early time-points. This implies that centrifugal spinning offers a viable scale-up production process to prepare drug-loaded fiber-based solid dispersions.

3.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201788

RESUMO

An amorphous fiber-based solid dispersion of chlorzoxazone was prepared for the first time by employing centrifugal spinning, using polyvinylpyrrolidone as the fiber-forming polymer. After optimization of the spinning parameters, the obtained fibers were characterized using a set of analytical techniques, both in a solid- and solution-state. Morphological characterization revealed a slightly aligned, defect-free fibrous structure with an average fiber diameter of d = 3.07 ± 1.32 µm. The differential scanning calorimetric results indicated a crystalline-to-amorphous transition of the active substance during the centrifugal spinning process, while gas chromatographic determinations revealed a residual ethanol content of 0.42 ± 0.04%. UV spectroscopy indicated the incorporation of chlorzoxazone in the fibrous structures, with an average active substance content of 15.91 ± 0.36 w/w%. During small-volume dissolution studies, the prepared fiber mats presented immediate disintegration upon contact with the dissolution media, followed by rapid dissolution of the active substance, with 84.8% dissolved at 1 min and 93.7% at 3 min, outperforming the micronized, pure chlorzoxazone. The obtained results indicate that centrifugal spinning is a low-cost, high-yield, viable alternative to the currently used methods to prepare fiber-based amorphous solid dispersions of poorly soluble drugs. The prepared chlorzoxazone-loaded microfibers could be used as a buccal dosage form for the systematic delivery of chlorzoxazone and could potentially lead to a rapid onset of action and longer efficacy of the muscle relaxant drug.

4.
Polymers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559924

RESUMO

Lapatinib (Lap) is a lypophilic drug frequently used in cancer treatment; however, due to its limited solubility and permeability, achieving therapeutic dose through oral administration proves to be a challenge. There are various methods for enhancing the solubility of Lap and other similar drugs, one being the preparation of amorphous solid dispersions (ASD). In this study, a Lap-loaded polyvinylpyrrolidone (PVP) fiber mat was created with centrifugal spinning from a PVP/Lap solution in dimethyl formamide and ethanol. The production rate was 12.2 g/h dry fibers, and the fibers had an average thickness of 2.55 ± 0.92 µm. In the differential scanning calorimetry (DSC) thermogram of the fiber mat, the melting peak of the crystalline Lap was not visible, suggesting that Lap was in an amorphous state. A dissolution study was carried out in 0.2 M phosphate buffer saline solution at 37 °C. UV spectrophotometry data indicated that in the sample containing the fiber mat, the Lap concentration was 332 µg/mL (66%) in 10 min, decreasing to 227 µg/mL by 45 min. Meanwhile the crystalline Lap formed a 30-40 µg/mL (6-8%) solution in 5 min, maintaining that concentration. We conclude that centrifugal spinning can be an effective and easy method to produce ASDs.

5.
Pharmaceutics ; 12(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629988

RESUMO

Fenofibrate-loaded electrospun microfibrous sheets were prepared in an attempt to enhance the dissolution of the poorly soluble antihyperlipidemic agent and to improve its bioavailability. Physicochemical changes that appeared during the electrospinning process were monitored using a wide array of solid-state characterization techniques, including attenuated total reflectance Fourier-transformed infrared spectroscopy and positron annihilation lifetime spectroscopy, while fiber morphology was monitored via scanning electron microscopy. Dissolution studies carried out both in 0.025 M sodium dodecyl sulfate and in water revealed an immediate release of the active agent, with an approximately 40-fold release rate enhancement in water when compared to the micronized active agent. The dramatic increase in dissolution was attributed partially to the amorphous form of the originally crystalline active agent and the rapid disintegration of the electrospun microfibrous sheet due to its high surface area and porosity. The obtained results could pave the way for a formulation of the frequently used antihyperlipidemic agent with increased bioavailability.

6.
Polymers (Basel) ; 11(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960513

RESUMO

In this work a cycloaliphatic amine-cured epoxy (EP) resin was modified by micron-scale rubber particles (RP). Nominal RP, in sizes of 200 and 600 µm respectively, were produced using worn truck tires and ultra-high-pressure water jet cutting. The RP were dispersed into the EP resin using different mixing techniques (mechanical, magnetic, and ultrasonic stirring) prior to the introduction of the amine hardener. The dispersion of the RP was studied using optical light microscopy. A longer mixing time reduced the mean size of the particles in the EP compounds. Static (tensile and flexural), dynamic (unnotched Charpy impact), and fracture mechanical (fracture toughness and strain-energy release rate) properties were determined. The incorporation of the RP decreased the stiffness and strength values of the modified EPs. In contrast, the irregular and rough surface of the RP resulted in improved toughness. The fracture toughness and strain-energy release rate were enhanced up to 18% owing to the incorporation of 1% by weight (wt%) RP. This was traced to the effects of crack pinning and crack deflection. Considerably higher improvement (i.e., up to 130%) was found for the unnotched Charpy impact energy. This was attributed to multiple cracking associated with RP-bridging prior to final fracture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA