Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Nat Rev Drug Discov ; 23(4): 281-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263456

RESUMO

mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.


Assuntos
Nanopartículas , Vacinas , Humanos , Vacinas/efeitos adversos , Vacinas contra COVID-19/efeitos adversos , Edição de Genes , Terapia Genética , RNA Mensageiro/genética
3.
NanoImpact ; 30: 100463, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060994

RESUMO

Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.


Assuntos
Microbiota , Peixe-Zebra , Humanos , Camundongos , Animais , RNA Ribossômico 16S/genética , Peixe-Zebra/genética , Bacteroidetes/genética , Ácido gama-Aminobutírico
4.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839088

RESUMO

Recent studies in experimental animals found that oral exposure to micro- and nano-plastics (MNPs) during pregnancy had multiple adverse effects on outcomes and progeny, although no study has yet identified the translocation of ingested MNPs to the placenta or fetal tissues, which might account for those effects. We therefore assessed the placental and fetal translocation of ingested nanoscale polystyrene MNPs in pregnant rats. Sprague Dawley rats (N = 5) were gavaged on gestational day 19 with 10 mL/kg of 250 µg/mL 25 nm carboxylated polystyrene spheres (PS25C) and sacrificed after 24 h. Hyperspectral imaging of harvested placental and fetal tissues identified abundant PS25C within the placenta and in all fetal tissues examined, including liver, kidney, heart, lung and brain, where they appeared in 10-25 µm clusters. These findings demonstrate that ingested nanoscale polystyrene MNPs can breach the intestinal barrier and subsequently the maternal-fetal barrier of the placenta to access the fetal circulation and all fetal tissues. Further studies are needed to assess the mechanisms of MNP translocation across the intestinal and placental barriers, the effects of MNP polymer, size and other physicochemical properties on translocation, as well as the potential adverse effects of MNP translocation on the developing fetus.

5.
Carbon N Y ; 204: 484-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36845527

RESUMO

Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The increasing usage of NMs arises great concerns regarding nanotoxicity in humans. Traditional animal testing of nanotoxicity is expensive and time-consuming. Modeling studies using machine learning (ML) approaches are promising alternatives to direct evaluation of nanotoxicity based on nanostructure features. However, NMs, including two-dimensional nanomaterials (2DNMs) such as graphenes, have complex structures making them difficult to annotate and quantify the nanostructures for modeling purposes. To address this issue, we constructed a virtual graphenes library using nanostructure annotation techniques. The irregular graphene structures were generated by modifying virtual nanosheets. The nanostructures were digitalized from the annotated graphenes. Based on the annotated nanostructures, geometrical nanodescriptors were computed using Delaunay tessellation approach for ML modeling. The partial least square regression (PLSR) models for the graphenes were built and validated using a leave-one-out cross-validation (LOOCV) procedure. The resulted models showed good predictivity in four toxicity-related endpoints with the coefficient of determination (R2) ranging from 0.558 to 0.822. This study provides a novel nanostructure annotation strategy that can be applied to generate high-quality nanodescriptors for ML model developments, which can be widely applied to nanoinformatics studies of graphenes and other NMs.

6.
J Breath Res ; 17(1)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541529

RESUMO

In the field of biomonitoring, exhaled breath condensate (EBC) is described as a potentially useful matrix for assessing inhalation exposure biomarkers in a non-invasive way. However, it is still unclear to what extent EBC is representative of the deep lung. To address this knowledge gap, EBC, bronchial washes (BWs), and bronchoalveolar lavages (BALs) were collected from 82 patients suffering from interstitial lung diseases (ILDs). The particulate contents and elemental composition of EBC, BW, and BAL were then compared in the same patients. The size distribution of particles in EBC was assessed with dynamic light scattering while inductively coupled plasma mass spectrometry was used to quantify its elemental composition. In addition, transmission electron microscopy coupled with energy dispersive x-ray spectrometry were used to further characterize samples of interest. EBC was found to be representative of both the sub-micron and nano-sized particle fractions of BAL and BW, with lower overall levels of elements in EBC than in BW and BAL. Silicon (Si) was the main component for all respiratory matrices with median levels of 2525µg l-1, 5643µg l-1and 5169µg l-1in the nano/ion fractions of EBC, BAL and BW, respectively. Moreover, Si levels in EBC from patients in this study were elevated compared to the levels reported in the literature for healthy subjects. Interestingly, Si levels in the EBC of ILD patients were inversely related to those in BAL and BW. In conclusion, the particulate content of EBC is associated with the lung particle burden and potentially correlates with pathologies, rendering it a relevant biomonitoring technique for the occupational and clinical fields.


Assuntos
Doenças Pulmonares Intersticiais , Irrigação Terapêutica , Humanos , Testes Respiratórios/métodos , Pulmão/química , Lavagem Broncoalveolar , Biomarcadores/análise
7.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432221

RESUMO

A freely available "in vitro dosimetry" web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs' properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

8.
Environ Sci Technol ; 56(17): 12288-12297, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973094

RESUMO

Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 µg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of ß-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.


Assuntos
Lipólise , Microplásticos , Animais , Digestão , Incineração , Absorção Intestinal , Mucosa Intestinal/metabolismo , Lipase/metabolismo , Polietileno/metabolismo , Triglicerídeos/metabolismo
9.
Chem Res Toxicol ; 35(7): 1244-1256, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35706338

RESUMO

Applications of reduced graphene oxide (rGO) in many different areas have been gradually increasing owing to its unique physicochemical characteristics, demanding more understanding of their biological impacts. Herein, we assessed the toxicological effects of rGO in mammary epithelial cells. Because the as-synthesized rGO was dissolved in sodium cholate to maintain a stable aqueous dispersion, we hypothesize that changing the cholate concentration in the dispersion may alter the surface property of rGO and subsequently affect its cellular toxicity. Thus, four types of rGO were prepared and compared: rGO dispersed in 4 and 2 mg/mL sodium cholate, labeled as rGO and concentrated-rGO (c-rGO), respectively, and rGO and c-rGO coated with a protein corona through 1 h incubation in culture media, correspondingly named pro-rGO and pro-c-rGO. Notably, c-rGO and pro-c-rGO exhibited higher toxicity than rGO and pro-rGO and also caused higher reactive oxygen species production, more lipid membrane peroxidation, and more significant disruption of mitochondrial-based ATP synthesis. In all toxicological assessments, pro-c-rGO induced more severe adverse impacts than c-rGO. Further examination of the material surface, protein adsorption, and cellular uptake showed that the surface of c-rGO was coated with a lower content of surfactant and adsorbed more proteins, which may result in the higher cellular uptake observed with pro-c-rGO than pro-rGO. Several proteins involved in cellular redox mediation were also more enriched in pro-c-rGO. These results support the strong correlation between dispersant coating and corona formation and their subsequent cellular impacts. Future studies in this direction could reveal a deeper understanding of the correlation and the specific cellular pathways involved and help gain knowledge on how the toxicity of rGO could be modulated through surface modification, guiding the sustainable applications of rGO.


Assuntos
Grafite , Coroa de Proteína , Grafite/química , Espécies Reativas de Oxigênio/metabolismo , Colato de Sódio
10.
NanoImpact ; 26: 100401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35560286

RESUMO

Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.


Assuntos
Grafite , Nanoestruturas , Células Endoteliais , Endotélio , Grafite/farmacologia , Nanoestruturas/química
11.
NanoImpact ; 25: 100379, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559885

RESUMO

Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.


Assuntos
Células Epiteliais , Nanopartículas , Animais , Dano ao DNA , Reparo do DNA , Humanos , Nanopartículas/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614018

RESUMO

The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.


Assuntos
Nanopartículas , Testículo , Animais , Masculino , Distribuição Tecidual , Testículo/metabolismo , Espermatogênese , Nanopartículas/toxicidade , Fertilidade
13.
Environ Sci Nano ; 8(2): 2554-2568, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840801

RESUMO

Nanoscale materials derived from natural biopolymers like cellulose and chitosan have many potentially useful agri-food and oral drug delivery applications. Because of their large and potentially bioactive surface areas and other unique physico-chemical properties, it is essential when evaluating their toxicological impact to assess potential effects on the digestion and absorption of co-ingested nutrients. Here, the effects of cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and chitosan nanoparticles (Chnp) on the digestion and absorption of carbohydrates were studied. Starch digestion was assessed by measuring maltose released during simulated digestion of starch solutions. Glucose absorption was assessed by measuring translocation from the resulting digestas across an in vitro transwell tri-culture model of the small intestinal epithelium and calculating the area under the curve increase in absorbed glucose, analogous to the glycemic index. At 1% w/w, CNF and Chnp had small but significant effects (11% decrease and 14% increase, respectively) and CNC had no effect on starch hydrolysis during simulated digestion of a 1% w/w rice starch solution. In addition, at 2% w/w CNC had no effect on amylolysis in 1% solutions of either rice, corn, or wheat starch. Similarly, absorption of glucose from digestas of starch solutions (i.e., from maltose), was unaffected by 1% w/w CNF or CNC, but was slightly increased (10%, p<0.05) by 1% Chnp, possibly due to the slightly higher maltose concentration in the Chnp-containing digestas. In contrast, all of the test materials caused sharp increases (~1.2, 1.5, and 1.6 fold for CNC, CNF, and Chnp, respectively) in absorption of glucose from starch-free digestas spiked with free glucose at a concentration corresponding to complete hydrolysis of 1% w/w starch. The potential for ingested cellulose and chitosan nanomaterials to increase glucose absorption could have important health implications. Further studies are needed to elucidate the mechanisms underlying the observed increases and to evaluate the potential glycemic effects in an intact in vivo system.

14.
Food Chem Toxicol ; 158: 112609, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673181

RESUMO

Despite mounting evidence of increasing micro- and nanoplastics (MNPs) in natural environments, food, and drinking water, little is known of the potential health hazards of MNPs ingestion. We assessed toxicity and uptake of environmentally relevant MNPs in an in vitro small intestinal epithelium (SIE). Test MNPs included 25 and 1000 nm polystyrene (PS) microspheres (PS25 and PS1K); 25, 100, and 1000 nm carboxyl modified PS spheres (PS25C, PS100C, and PS1KC), and secondary MNPs from incinerated polyethylene (PEI). MNPs were subjected to 3-phase digestion to mimic transformations in the gastrointestinal tract (GIT) and digestas applied to the SIE. Carboxylated MNPs significantly reduced viability and increased permeability to 3 kD dextran. Uptake of carboxyl PS materials was size dependent, with significantly greater uptake of PS25C. Fluorescence confocal imaging showed some PS25C agglomerates entering cells independent of endosomes (suggesting diffusion), others within actin shells (suggesting phagocytosis), and many free within the epithelial cells, including agglomerates within nuclei. Pre-treatment with the dynamin inhibitor Dyngo partially reduced PS25 translocation, suggesting a potential role for endocytosis. These findings suggest that ingestion exposures to MNPs could have serious health consequences and underscore the urgent need for additional detailed studies of the potential hazards of ingested MNPs.


Assuntos
Núcleo Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Microplásticos/toxicidade , Polietileno/química , Poliestirenos/toxicidade , Actinas , Transporte Biológico , Células CACO-2 , Endocitose , Exposição Ambiental/efeitos adversos , Células HT29 , Humanos , Microplásticos/metabolismo , Microesferas , Nanoestruturas , Imagem Óptica , Tamanho da Partícula , Permeabilidade , Poliestirenos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
15.
Redox Biol ; 47: 102161, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624601

RESUMO

Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal aspiration of CB or oxidized CBox particles (20 µg per mouse) in C57BL/6J mice. Toxicity and functional assays were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy (EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA expression, monolayer permeability, and wound closure. XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer permeability and impairment of scratch healing in CXCR3 dependent manner. In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and established the role of macrophage-released chemical mediators in endothelial damage.


Assuntos
Nanopartículas , Fuligem , Animais , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas , Fuligem/toxicidade
16.
Part Fibre Toxicol ; 18(1): 33, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479598

RESUMO

BACKGROUND: Metal oxide nanoparticles (NPs) are increasingly used in many industrial and biomedical applications, hence their impact on occupational and public health has become a concern. In recent years, interest on the effect that exposure to NPs may exert on human reproduction has grown, however data are still scant. In the present work, we investigated whether different metal oxide NPs interfere with mouse cumulus cell-oocyte complex (COC) expansion. METHODS: Mouse COCs from pre-ovulatory follicles were cultured in vitro in the presence of various concentrations of two types of TiO2 NPs (JRC NM-103 and NM-104) and four types of ZnO NPs (JRC NM-110, NM-111, and in-house prepared uncoated and SiO2-coated NPs) and the organization of a muco-elastic extracellular matrix by cumulus cells during the process named cumulus expansion was investigated. RESULTS: We show that COC expansion was not affected by the presence of both types of TiO2 NPs at all tested doses, while ZnO NM-110 and NM-111 induced strong toxicity and inhibited COCs expansion at relatively low concentration. Medium conditioned by these NPs showed lower toxicity, suggesting that, beside ion release, inhibition of COC expansion also depends on NPs per se. To further elucidate this, we compared COC expansion in the presence of uncoated or SiO2-coated NPs. Differently from the uncoated NPs, SiO2-coated NPs underwent slower dissolution, were not internalized by the cells, and showed an overall lower toxicity. Gene expression analysis demonstrated that ZnO NPs, but not SiO2-coated ZnO NPs, affected the expression of genes fundamental for COC expansion. Dosimetry analysis revealed that the delivered-to-cell mass fractions for both NPs was very low. CONCLUSIONS: Altogether, these results suggest that chemical composition, dissolution, and cell internalization are all responsible for the adverse effects of the tested NPs and support the importance of a tailored, safer-by-design production of NPs to reduce toxicity.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Células do Cúmulo , Feminino , Nanopartículas Metálicas/toxicidade , Camundongos , Oócitos , Dióxido de Silício/toxicidade , Óxido de Zinco/toxicidade
17.
ACS Nano ; 15(3): 4728-4746, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33710878

RESUMO

The potential genotoxic effects of engineered nanomaterials (ENMs) may occur through the induction of DNA damage or the disruption of DNA repair processes. Inefficient DNA repair may lead to the accumulation of DNA lesions and has been linked to various diseases, including cancer. Most studies so far have focused on understanding the nanogenotoxicity of ENM-induced damages to DNA, whereas the effects on DNA repair have been widely overlooked. The recently developed fluorescence multiplex-host-cell reactivation (FM-HCR) assay allows for the direct quantification of multiple DNA repair pathways in living cells and offers a great opportunity to address this methodological gap. Herein an FM-HCR-based method is developed to screen the impact of ENMs on six major DNA repair pathways using suspended or adherent cells. The sensitivity and efficiency of this DNA repair screening method were demonstrated in case studies using primary human small airway epithelial cells and TK6 cells exposed to various model ENMs (CuO, ZnO, and Ga2O3) at subcytotoxic doses. It was shown that ENMs may inhibit nucleotide-excision repair, base-excision repair, and the repair of oxidative damage by DNA glycosylases in TK6 cells, even in the absence of significant genomic DNA damage. It is of note that the DNA repair capacity was increased by some ENMs, whereas it was suppressed by others. Overall, this method can be part of a multitier, in vitro hazard assessment of ENMs as a functional, high-throughput platform that provides insights into the interplay of the properties of ENMs, the DNA repair efficiency, and the genomic stability.


Assuntos
Nanopartículas , Nanoestruturas , Dano ao DNA , Reparo do DNA , Ensaios de Triagem em Larga Escala , Humanos
18.
Environ Sci Nano ; 8(11): 3233-3249, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465590

RESUMO

Background: Engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries. However, the potential health risks of exposure to ENMs remain poorly understood. This is particularly true for the emerging class of ENMs know as 2-dimensional nanomaterials (2DNMs), with a thickness of one or a few layers of atoms arranged in a planar structure. Methods: The present study assesses the biotransformations and in vitro cytotoxicity in the gastrointestinal tract of 11 2DNMs, namely graphene, graphene oxide (GO), partially reduced graphene oxide (prGO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2). The evaluated pristine materials were either readily dispersed in water or dispersed with the use of a surfactant (Na-cholate or PF108). Materials dispersed in a fasting food model (FFM, water) were subjected to simulated 3-phase (oral, gastric, and small intestinal) digestion to replicate the biotransformations that would occur in the GIT after ingestion. A triculture model of small intestinal epithelium was used to assess the effects of the digested products (digestas) on epithelial layer integrity, cytotoxicity, viability, oxidative stress, and initiation of apoptosis. Results: Physicochemical characterization of the 2DNMs in FFM dispersions and in small intestinal digestas revealed significant agglomeration by all materials during digestion, most prominently by graphene, which was likely caused by interactions with digestive proteins. Also, MoS2 had dissolved by ~75% by the end of simulated digestion. Other than a low but statistically significant increase in cytotoxicity observed with all inorganic materials and graphene dispersed in PF108, no adverse effects were observed in the exposed tricultures. Conclusions: Our results suggest that occasional ingestion of small quantities of 2DNMs may not be highly cytotoxic in a physiologically relevant in vitro model of the intestinal epithelium. Still, their inflammatory or genotoxic potential after short- or long-term ingestion remains unclear and needs to be studied in future in vitro and in vivo studies. These would include studies of effects on co-ingested nutrient digestion and absorption, which have been documented for numerous ingested ENMs, as well as effects on the gut microbiome, which can have important health implications.

19.
NanoImpact ; 172020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33251378

RESUMO

An increasing number of commercial skincare products are being manufactured with engineered nanomaterials (ENMs), prompting a need to fully understand how ENMs interact with the dermal barrier as a major biodistribution entry route. Although animal studies show that certain nanomaterials can cross the skin barrier, physiological differences between human and animal skin, such as the lack of sweat glands, limit the translational validity of these results. Current optical microscopy methods have limited capabilities to visualize ENMs within human skin tissues due to the high amount of background light scattering caused by the dense, ubiquitous extracellular matrix (ECM) of the skin. Here, we hypothesized that organic solvent-based tissue clearing ("immunolabeling-enabled three-dimensional imaging of solvent-cleared organs", or "iDISCO") would reduce background light scattering from the extracellular matrix of the skin to sufficiently improve imaging contrast for both 2D mapping of unlabeled metal oxide ENMs and 3D mapping of fluorescent nanoparticles. We successfully mapped the 2D distribution of label-free TiO2 and ZnO nanoparticles in cleared skin sections using correlated signals from darkfield, brightfield, and confocal microscopy, as well as micro-spectroscopy. Specifically, hyperspectral microscopy and Raman spectroscopy confirmed the identity of label-free ENMs which we mapped within human skin sections. We also measured the 3D distribution of fluorescently labeled Ag nanoparticles in cleared skin biopsies with wounded epidermal layers using light sheet fluorescence microscopy. Overall, this study explores a novel strategy for quantitatively mapping ENM distributions in cleared ex vivo human skin tissue models using multiple imaging modalities. By improving the imaging contrast, we present label-free 2D ENM tracking and 3D ENM mapping as promising capabilities for nanotoxicology investigations.

20.
NanoImpact ; 182020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32617436

RESUMO

Emerging, two-dimensional engineered nanomaterials (2DNMs) possess unique and diverse physical and chemical properties, such as extreme aspect ratios, adjustable electronic properties as well as functional lattice defects and surface chemistry which underpin their interactions with biological systems. This perspective highlights the need for structure activity relationship (SAR) studies for key properties of emerging grapheme-related and inorganic 2DNMs upon prioritization based on their potential impact and trajectory for large-scale production and applications. Further, it is discussed how a synthesis platform of microbiologically sterile, size-sorted, "model" 2DNMs with precise structure would enable SAR toxicological studies and allow for the sustainable and safe translation of 2D nanotechnology to real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...