Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653795

RESUMO

PURPOSE: Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS: Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS: There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION: Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.

2.
Int J Sports Med ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38286426

RESUMO

The aim of this study was to compare the effects of progressive overload in resistance training on muscle strength and cross-sectional area (CSA) by specifically comparing the impact of increasing load (LOADprog) versus an increase in repetitions (REPSprog). We used a within-subject experimental design in which 39 previously untrained young persons (20 men and 19 women) had their legs randomized to LOADprog and REPSprog. Outcomes were assessed before and after 10 weeks of training. Muscle strength was assessed using the one repetition maximum (1RM) test on the leg extension exercise, and the CSA of the vastus lateralis was assessed by ultrasonography. Both protocols increased 1RM values from pre (LOADprog: 52.90±16.32 kg; REPSprog: 51.67±15.84 kg) to post (LOADprog: 69.05±18.55 kg, REPSprog: 66.82±17.95 kg), with no difference between them (P+>+0.05). Similarly, both protocols also increased in CSA values from pre (LOADprog: 21.34±4.71 cm²; REPSprog: 21.08±4.62 cm²) to post (LOADprog: 23.53±5.41 cm², REPSprog: 23.39±5.19 cm²), with no difference between them (P+>+0.05). In conclusion, our findings indicate that the progression of overload through load or repetitions can be used to promote gains in strength and muscle hypertrophy in young men and women in the early stages of training.

3.
J Strength Cond Res ; 36(5): 1209-1215, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443368

RESUMO

ABSTRACT: Bergamasco, JGA, Gomes da Silva, D, Bittencourt, DF, Martins de Oliveira, R, Júnior, JCB, Caruso, FC, Godoi, D, Borghi-Silva, A, and Libardi, CA. Low-load resistance training performed to muscle failure or near muscle failure does not promote additional gains on muscle strength, hypertrophy, and functional performance of older adults. J Strength Cond Res 36(5): 1209-1215, 2022-The aim of the present study was to compare the effects of low-load resistance training (RT) protocols performed to failure (FAI), to voluntary interruption (VOL), and with a fixed low repetitions (FIX) on muscle strength, hypertrophy, and functional performance in older adults. Forty-one subjects (60-77 years) were randomized into one of the RT protocols (FAI, VOL, or FIX) and completed 12 weeks of RT at 40% of 1 repetition maximum (1RM), twice a week. The assessments included 1RM test, muscle cross-sectional area (CSA), rate of torque development (RTD), and functional performance (chair stand [CS], habitual gait speed [HGS], maximal gait speed [MGS], and timed up-and-go [TUG]). All protocols significantly increased 1RM values from Pre (FAI: 318.3 ± 116.3 kg; VOL: 342.9 ± 93.7 kg; FIX: 328.0 ± 107.2 kg) to Post (FAI: 393.0 ± 143.1 kg, 23.5%; VOL: 423.0 ± 114.5 kg, 23.3%; FIX: 397.8 ± 94.6 kg, 21.3%; p < 0.0001 for all groups). Regarding CS, all protocols showed significant improvements from Pre (FAI: 11.5 ± 2.4 seconds; VOL: 12.1 ± 2.5 seconds; FIX: 11.3 ± 1.1 seconds) to Post (FAI: 10.5 ± 1.1 seconds, -8.5%, p = 0.001; VOL: 10.3 ± 1.5 seconds, -15.1%, p = 0.001; FIX: 11.0 ± 1.1, -3.2%, p = 0.001). Habitual gait speed values increased significantly from Pre (FAI: 1.3 ± 0.2 m·s-1; VOL: 1.3 ± 0.1 m·s-1; FIX: 1.3 ± 0.1 m·s-1) to Post (FAI: 1.4 ± 0.2 m·s-1, 2.5%, p = 0.03; VOL: 1.4 ± 0.2 m·s-1, 5.2%, p = 0.036; FIX: 1.4 ± 0.1 m·s-1, 5.7%, p = 0.03). No significant differences between protocols were found (p > 0.05). In addition, there were no significant changes in CSA, RTD, MGS, and TUG for any protocols (p > 0.05). In conclusion, low-load RT performed without muscle failure promotes significant improvements in muscle strength and some parameters of functional performance in older adults.


Assuntos
Treinamento Resistido , Idoso , Humanos , Hipertrofia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Desempenho Físico Funcional , Treinamento Resistido/métodos
4.
Eur J Sport Sci ; 19(8): 1092-1100, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30702985

RESUMO

The aim of the present study was to investigate if resistance training (RT), performed with individualized recovery between sessions (RT-IND), promotes greater gains in strength and muscle mass and reduces the variability on adaptations compared to RT with fixed recovery intervals (RT-FIX). Twenty young men (age 21.9 ± 3.3 years) were randomized in the RT-IND and RT-FIX groups. Five days before the beginning of the training, measurements of the root mean square of successive R-R intervals differences (RMSSD) values of each individual were performed to establish the baseline values. Before each RT session, the RMSSD values determined whether the participants from RT-IND protocol were recovered from the previous session. Participants performed the RT session only if RMSSD values had returned to the baseline, otherwise they had to wait for an additional 24 h. RT-FIX performed an RT session every 48 h. Muscle strength was measured by one-maximal repetition (1-RM) test and muscle cross-section area (CSA) of the vastus laterals by ultrasonography were assessed pre- and post-training. 1-RM values increased significantly from pre to post-training for both groups (RT-IND: 30% and RT-FIX: 42%, main time effect, P < 0001), with no significant difference between groups. Muscle CSA increased significantly from pre to post-training (RT-IND: 15.7% and RT-FIX: 15.8%, main time effect, P < 0001), with no significant difference between groups. In conclusion, RT-IND did not increase the gains in muscle strength and mass neither reduce the variability in muscle adaptations when compared to the RT-FIX.


Assuntos
Frequência Cardíaca , Força Muscular , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Adulto , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...