Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Infect Dis ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135285

RESUMO

Respiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests it may also be responsible for neurological sequelae. In 3D microphysiological peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along two distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity. Infection with higher viral loads was persistent, infected neuronal cells in addition to monocytes, and induced robust chemokine release followed by progressive neurotoxicity. In spinal cord cultures, RSV infected microglia and dendritic cells but not neurons, producing a moderate chemokine expression pattern. The persistence of infection was variable but could be identified in dendritic cells as long as 30 days post-inoculation. This study suggests that RSV can disrupt neuronal function directly through infection of peripheral neurons and indirectly through infection of resident monocytes, and inflammatory chemokines likely mediate both mechanisms.

2.
Front Physiol ; 14: 1189731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324385

RESUMO

Perlecan is a 500 kDa proteoglycan residing in the extracellular matrix of endothelial basement membranes with five distinct protein domains and three heparan sulfate chains. The complex structure of perlecan and the interaction it has with its local environment accounts for its various cellular and tissue-related effects, to include cartilage, bone, neural and cardiac development, angiogenesis, and blood brain barrier stability. As perlecan is a key contributor to extracellular matrix health involved in many tissues and processes throughout the body, dysregulation of perlecan has the potential to contribute to various neurological and musculoskeletal diseases. Here we review key findings associated with perlecan dysregulation in the context of disease. This is a narrative review article examining perlecan’s role in diseases of neural and musucloskeletal pathology and its potential as a therapeutic index. Literature searches were conducted on the PubMed database, and were focused on perlecan's impact in neurological disease, to include ischemic stroke, Alzheimer's Disease (AD) and brain arteriovenous malformation (BAVM), as well as musculoskeletal pathology, including Dyssegmental Dysplasia Silverman-Handmaker type (DDSH), Schwartz-Jampel syndrome (SJS), sarcopenia, and osteoarthritis (OA). PRISMA guidelines were utilized in the search and final selection of articles.Increased perlecan levels were associated with sarcopenia, OA, and BAVM, while decreased perlecan was associated with DDSH, and SJS. We also examined the therapeutic potential of perlecan signaling in ischemic stroke, AD, and osteoarthritic animal models. Perlecan experimentally improved outcomes in such models of ischemic stroke and AD, and we found that it may be a promising component of future therapeutics for such pathology. In treating the pathophysiology of sarcopenia, OA, and BAVM, inhibiting the effect of perlecan may be beneficial. As perlecan binds to both α-5 integrin and VEGFR2 receptors, tissue specific inhibitors of these proteins warrant further study. In addition, analysis of experimental data revealed promising insight into the potential uses of perlecan domain V as a broad treatment for ischemic stroke and AD. As these diseases have limited therapeutic options, further study into perlecan or its derivatives and its potential to be used as novel therapeutic for these and other diseases should be seriously considered.

3.
Front Neurosci ; 17: 1177040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255752

RESUMO

Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.

4.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945622

RESUMO

Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1ß signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.

6.
Transl Stroke Res ; 14(6): 941-954, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508132

RESUMO

Despite recent therapeutic advancements, ischemic stroke remains a major cause of death and disability. It has been previously demonstrated that ~ 85-kDa recombinant human perlecan domain V (rhPDV) binds to upregulated integrin receptors (α2ß1 and α5ß1) associated with neuroprotective and functional improvements in various animal models of acute ischemic stroke. Recombinant human perlecan laminin-like globular domain 3 (rhPDVLG3), a 21-kDa C-terminal subdomain of rhPDV, has been demonstrated to more avidly bind to the α2ß1 integrin receptor than its parent molecule and consequently was postulated to evoke significant neuroprotective and functional effects. To test this hypothesis, fifty male C57Bl/6 J mice studied in a t-MCAO model were randomly allocated to either rhPDV treatment, rhPDVLG3, or equivalent volume of PBS at the time of reperfusion in a study where all procedures and analyses were conducted blind to treatment. On post-MCAO day 7, 2,3,5-triphenyltetrazolium chloride staining of brain slices was used to quantify infarct volume. We observed that treatment with rhPDVLG3 reduced infarct volume by 65.6% (p = 0.0001), improved weight loss (p < 0.05), and improved functional outcome measures (p < 0.05) when compared to PBS controls, improvements which were generally greater in magnitude than those observed for 2 mg/kg of rhPDV. In addition, treatment with 6 mg/kg of rhPDVLG3 was observed to significantly reduce mortality due to stroke in one model, an outcome not previously observed for rhPDV. Our initial findings suggest that treatment with rhPDVLG3 provides significant improvement in neuroprotective and functional outcomes in experimental stroke models and that further investigation of rhPDVLG3 as a novel neuroprotective therapy for patients with stroke is warranted.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Masculino , AVC Isquêmico/tratamento farmacológico , Modelos Animais de Doenças , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Infarto/tratamento farmacológico , Integrinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico
7.
Front Cell Dev Biol ; 10: 856261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433700

RESUMO

This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2ß1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.

8.
Nat Commun ; 13(1): 1745, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365631

RESUMO

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis. Importantly, this is seen among infected animals that do not develop severe respiratory disease, which may provide insight into neurological symptoms associated with "long COVID". Sparse virus is detected in brain endothelial cells but does not associate with the severity of central nervous system (CNS) injury. We anticipate our findings will advance our current understanding of the neuropathogenesis of SARS-CoV-2 infection and demonstrate SARS-CoV-2 infected NHPs are a highly relevant animal model for investigating COVID-19 neuropathogenesis among human subjects.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , Células Endoteliais , Humanos , Primatas
9.
J Cereb Blood Flow Metab ; 42(8): 1410-1424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296173

RESUMO

Mitochondrial and glycolytic energy pathways regulate the vascular functions. Aging impairs the cerebrovascular function and increases the risk of stroke and cognitive dysfunction. The goal of our study is to characterize the impact of aging on brain microvascular energetics. We measured the oxygen consumption and extracellular acidification rates of freshly isolated brain microvessels (BMVs) from young (2-4 months) and aged (20-22 months) C57Bl/6 male mice. Cellular ATP production in BMVs was predominantly dependent on oxidative phosphorylation (OXPHOS) with glucose as the preferred energy substrate. Aged BMVs exhibit lower ATP production rate with diminished OXPHOS and glycolytic rate accompanied by increased utilization of glutamine. Impairments of glycolysis displayed by aged BMVs included reduced compensatory glycolysis whereas impairments of mitochondrial respiration involved reduction of spare respiratory capacity and proton leak. Aged BMVs showed reduced levels of key glycolysis proteins including glucose transporter 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 but normal lactate dehydrogenase activity. Mitochondrial protein levels were mostly unchanged whereas citrate synthase activity was reduced, and glutamate dehydrogenase was increased in aged BMVs. Thus, for the first time, we identified the dominant role of mitochondria in bioenergetics of BMVs and the alterations of the energy pathways that make the aged BMVs vulnerable to injury.


Assuntos
Metabolismo Energético , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Glicólise/fisiologia , Masculino , Camundongos , Consumo de Oxigênio
10.
Clin Transl Sci ; 15(1): 279-286, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463026

RESUMO

Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study.


Assuntos
Terapia Combinada , Infusões Intra-Arteriais , AVC Isquêmico/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Resultado do Tratamento , Verapamil/farmacologia
11.
Clin Infect Dis ; 75(1): e1195-e1201, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34651164

RESUMO

The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dose, infection, and coronavirus disease 2019 (COVID-19) outcomes remains poorly understood. This review summarizes the existing literature regarding this issue, identifies gaps in current knowledge, and suggests opportunities for future research. In humans, host characteristics, including age, sex, comorbidities, smoking, and pregnancy, are associated with severe COVID-19. Similarly, in animals, host factors are strong determinants of disease severity, although most animal infection models manifest clinically with mild to moderate respiratory disease. The influence of variants of concern as it relates to infectious dose, consequence of overall pathogenicity, and disease outcome in dose-response remains unknown. Epidemiologic data suggest a dose-response relationship for infection contrasting with limited and inconsistent surrogate-based evidence between dose and disease severity. Recommendations include the design of future infection studies in animal models to investigate inoculating dose on outcomes and the use of better proxies for dose in human epidemiology studies.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Comorbidade , Feminino , Humanos , Gravidez
12.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33102950

RESUMO

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

13.
Transl Stroke Res ; 12(1): 72-86, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32253702

RESUMO

The extracellular matrix fragment perlecan domain V is neuroprotective and functionally restorative following experimental stroke. As neurogenesis is an important component of chronic post-stroke repair, and previous studies have implicated perlecan in developmental neurogenesis, we hypothesized that domain V could have a broad therapeutic window by enhancing neurogenesis after stroke. We demonstrated that domain V is chronically increased in the brains of human stroke patients, suggesting that it is present during post-stroke neurogenic periods. Furthermore, perlecan deficient mice had significantly less neuroblast precursor cells after experimental stroke. Seven-day delayed domain V administration enhanced neurogenesis and restored peri-infarct excitatory synaptic drive to neocortical layer 2/3 pyramidal neurons after experimental stroke. Domain V's effects were inhibited by blockade of α2ß1 integrin, suggesting the importance of α2ß1 integrin to neurogenesis and domain V neurogenic effects. Our results demonstrate that perlecan plays a previously unrecognized role in post-stroke neurogenesis and that delayed DV administration after experimental stroke enhances neurogenesis and improves recovery in an α2ß1 integrin-mediated fashion. We conclude that domain V is a clinically relevant neuroprotective and neuroreparative novel stroke therapy with a broad therapeutic window.


Assuntos
Encéfalo/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , Neurogênese/fisiologia , Neuroproteção/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Proteoglicanas de Heparan Sulfato/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Domínios Proteicos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
14.
Transl Stroke Res ; 12(1): 1-14, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862401

RESUMO

Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.


Assuntos
Isquemia Encefálica/patologia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Encéfalo/fisiologia , Isquemia Encefálica/terapia , Humanos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Transplante de Células-Tronco/tendências , Acidente Vascular Cerebral/terapia
17.
Front Physiol ; 11: 1046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982785

RESUMO

Environmental stress during early life is an important factor that affects the postnatal renal development. We have previously shown that male rats exposed to maternal separation (MatSep), a model of early life stress, are normotensive but display a sex-specific reduced renal function and exacerbated angiotensin II (AngII)-mediated vascular responses as adults. Since optimal AngII levels during postnatal life are required for normal maturation of the kidney, this study was designed to investigate both short- and long-term effect of MatSep on (1) the renal vascular architecture and function, (2) the intrarenal renin-angiotensin system (RAS) components status, and (3) the genome-wide expression of genes in isolated renal vasculature. Renal tissue and plasma were collected from male rats at different postnatal days (P) for intrarenal RAS components mRNA and protein expression measurements at P2, 6, 10, 14, 21, and 90 and microCT analysis at P21 and 90. Although with similar body weight and renal mass trajectories from P2 to P90, MatSep rats displayed decreased renal filtration capacity at P90, while increased microvascular density at both P21 and P90 (p < 0.05). MatSep increased renal expression of renin, and angiotensin type 1 (AT1) and type 2 (AT2) receptors (p < 0.05), but reduced ACE2 mRNA expression and activity from P2-14 compared to controls. However, intrarenal levels of AngII peptide were reduced (p < 0.05) possible due to the increased degradation to AngIII by aminopeptidase A. In isolated renal vasculature from neonates, Enriched Biological Pathways functional clusters (EBPfc) from genes changed by MatSep reported to modulate extracellular structure organization, inflammation, and pro-angiogenic transcription factors. Our data suggest that male neonates exposed to MatSep could display permanent changes in the renal microvascular architecture in response to intrarenal RAS imbalance in the context of the atypical upregulation of angiogenic factors.

18.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968632

RESUMO

Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.


Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Demência/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Amiloide/metabolismo , Demência Vascular/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fatores de Risco
19.
J Cereb Blood Flow Metab ; 40(8): 1695-1708, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31575337

RESUMO

Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell ß1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by ß1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5ß1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1ß, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5ß1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1ß and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.


Assuntos
Encéfalo/efeitos dos fármacos , Integrina alfa5beta1/antagonistas & inibidores , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Animais , Encéfalo/irrigação sanguínea , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Oligopeptídeos/administração & dosagem
20.
Cerebrovasc Dis ; 48(3-6): 251-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851968

RESUMO

INTRODUCTION: Mechanical thrombectomy has become standard of care for emergent large vessel occlusive stroke. Estimates of incidence for thrombectomy eligibility vary significantly. National Institutes of Health Stroke Scale (NIHSS) of 10 or greater is highly predictive of large vessel occlusion. Using our Kentucky Appalachian Stroke Registry (KApSR), we evaluated temporal trends in stroke admissions with NIHSS ≥10 to determine patient characteristics among that group along with effects and needs in thrombectomy utilization. METHODS: Using the KApSR database that captures patients throughout the Appalachian region in our stroke network, we evaluated patients admitted with ischemic stroke with NIHSS ≥10. We recorded demographics, comorbidities, treatment (thrombectomy, decompressive craniectomy), and county of origin. Change in NIHSS from admission to discharge was used as an indicator of inpatient outcome. RESULTS: Between 2010 and 2016, 1,510 patients were admitted with NIHSS ≥10. 87.2% had high blood pressure, 69.6% had dyslipidemia, and 41.7% used tobacco. There were significant sex differences in the types of patients presenting with NIHSS ≥10 with females being older on average and having more atrial fibrillation and obesity. There was an increase in thrombectomy utilization from 2010 to 2016, but only 7.5% of the potentially eligible patients underwent the procedure. In comparison to the period 2010-2014, the 2015-2016 period had higher rates of obesity and tobacco abuse. CONCLUSION: Among patients with significant burden of ischemic stroke, the most common coexisting medical condition was high blood pressure. Patients who underwent thrombectomy had significantly better inpatient clinical improvement. These data support the need to maximize utilization of thrombectomy along with need to devote increased resources on modifiable stroke risk factors.


Assuntos
Isquemia Encefálica/terapia , Tomada de Decisão Clínica , Técnicas de Apoio para a Decisão , Avaliação da Deficiência , Seleção de Pacientes , Acidente Vascular Cerebral/terapia , Trombectomia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Região dos Apalaches/epidemiologia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/fisiopatologia , Comorbidade , Estudos Transversais , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores Sexuais , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/fisiopatologia , Trombectomia/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...