Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(20): 13697-13708, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583513

RESUMO

The Indo-Gangetic Plain (IGP) is one of the most highly polluted regions of the world, yet the temporal pattern of transport of anthropogenic aerosols from this region to the Himalayas is poorly constrained. On the basis of the seasonal variation of planetary boundary layer heights, air mass back trajectory analysis, and year-long time-series data for 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb, and 143Nd/144Nd from aerosols collected over a high-altitude station, we demonstrate that anthropogenic Pb transport to the glacierized catchment has a seasonal pattern. The Pb isotope data reveal that during winter, the thinned boundary layer traps up to 10 ± 7% more coal-derived Pb in the IGP. In contrast, in nonwinter months, a thicker boundary layer and enhanced subtropical westerly winds result in efficient Pb transport to the Himalayas. As Pb isotope ratios are robust conservative chemical tracers and Pb is predominantly derived from anthropogenic sources, these observations suggest that enhanced transport of anthropogenic aerosols to the glacierized catchment of the Himalayas coincides with higher near-surface temperatures in the summer, creating positive feedback that enhances melting. Our results further suggest that >50% of Pb in the Himalayan aerosols originates from the resuspension of historic Pb derived from phased out leaded gasoline, highlighting the importance of legacy Pb stored in the Indo-Gangetic Plains.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Isótopos/análise , Estações do Ano
2.
Proc Natl Acad Sci U S A ; 117(49): 30993-31001, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229590

RESUMO

Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.

3.
Environ Sci Technol ; 54(14): 8612-8621, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32584029

RESUMO

The origin, transport pathway, and spatial variability of total organic carbon (OC) in the western Himalayan glaciers are poorly understood compared to those of black carbon (BC) and dust, but it is critically important to evaluate the climatic role of OC in the region. By applying the distribution of OC activation energy; 14C activity; and radiogenic isotopes of 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb in glacial debris and atmospheric particulate matter (PM10 size fraction), we demonstrate that 98.3 ± 1.6 and 1.7 ± 1.6% of OC in western Himalayan glaciers are derived from biomass and petrogenic sources, respectively. The δ13C and N/C composition indicates that the biomass is a complex mixture of C3 vegetation and autochthonous photoautotrophic input modified by heterotrophic microbial activity. The data set reveals that the studied western Himalayan glacier has negligible contributions from fossil-fuel-derived particles, which contrasts to the central and eastern Himalayan glaciers that have significant contributions from fossil fuel sources. We show that this spatial variability of OC sources relates to regional differences in air mass transport pathways and precipitation regimes over the Himalaya. Moreover, our observation suggests that biomass-derived carbon could be the only primary driver of carbon-induced glacier melting in the western Himalaya.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
4.
Environ Sci Nano ; 6(3): 763-777, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853367

RESUMO

Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated 23,000-75,000 SSOs occurred annually in 2004 discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles such as particle size, composition, density, surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO2 engineered particles (e.g., ENMs and pigments) including 1) multi-element single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) total elemental concentrations and ratios calculated from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO2 particles are often associated with at least one of the following elements Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements is typical of riverine particulates and the average crustal ratios, except for Pb likely due to anthropogenic Pb contamination. High TiO2 engineered particle concentrations up to 100 µg L-1 were found in SSOs-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO2 particles in SSOs-impacted surface waters. This study provides a comprehensive approach for measuring TiO2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the road toward routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment.

5.
Nature ; 571(7765): E9, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31267084

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 569(7756): 398-403, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092940

RESUMO

Intraplate magmatic provinces found away from plate boundaries provide direct sampling of the composition and heterogeneity of the Earth's mantle. The chemical heterogeneities that have been observed in the mantle are usually attributed to recycling during subduction1-3, which allows for the addition of volatiles and incompatible elements into the mantle. Although many intraplate volcanoes sample deep-mantle reservoirs-possibly at the core-mantle boundary4-not all intraplate volcanoes are deep-rooted5, and reservoirs in other, shallower boundary layers are likely to participate in magma generation. Here we present evidence that suggests Bermuda sampled a previously unknown mantle domain, characterized by silica-undersaturated melts that are substantially enriched in incompatible elements and volatiles, and a unique, extreme isotopic signature. To our knowledge, Bermuda records the most radiogenic 206Pb/204Pb isotopes that have been documented in an ocean basin (with 206Pb/204Pb ratios of 19.9-21.7) using high-precision methods. Together with low 207Pb/204Pb ratios (15.5-15.6) and relatively invariant Sr, Nd, and Hf isotopes, the data suggest that this source must be less than 650 million years old. We therefore interpret the Bermuda source as a previously unknown, transient mantle reservoir that resulted from the recycling and storage of incompatible elements and volatiles6-8 in the transition zone (between the upper and lower mantle), aided by the fractionation of lead in a mineral that is stable only in this boundary layer, such as K-hollandite9,10. We suggest that recent recycling into the transition zone, related to subduction events during the formation of Pangea, is the reason why this reservoir has only been found in the Atlantic Ocean. Our geodynamic models suggest that this boundary layer was sampled by disturbances related to mantle flow. Seismic studies and diamond inclusions6,7 have shown that recycled materials can be stored in the transition zone11. For the first time, to our knowledge, we show geochemical evidence that this storage is key to the generation of extreme isotopic domains that were previously thought to be related only to deep recycling.

7.
J Environ Qual ; 47(5): 1258-1266, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272795

RESUMO

Exposure to microbial pathogens is the primary concern of sanitary sewer overflows; however, sewage spills may also be a significant source of toxic metals, including methylmercury (MeHg). Between November 2015 and January 2017, after Hurricane Joaquin, surface water samples were collected routinely from three creeks in Columbia, SC. Routine sampling coincided with six sewage spills. Total mercury (THg) and MeHg (unfiltered and filtered) and 32 other metals (filtered) were measured. Compared with surface water samples, THg (unfiltered and filtered), MeHg (unfiltered), and 19 other metals were significantly higher in sewage spills (all log-transformed) (two-tailed test, < 0.05 for all, = 38-42). Toxic weighting factors were applied to 18 metals, including THg and MeHg, in samples collected directly from sewage spills ( = 3-4) and a wastewater outfall ( = 5). On average, sewage was 18.2 and 12.0 times more toxic for THg and MeHg, respectively, and 1.75 times more toxic for all 18 metals, compared to treated effluent from the wastewater outfall. Results suggest sewage spills were a source of inorganic Hg, MeHg, and other metals to the receiving waters and may potentially contribute to water quality impairments.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais/análise , Compostos de Metilmercúrio/análise , Esgotos , South Carolina , Águas Residuárias/química
8.
Nat Commun ; 7: 13309, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824054

RESUMO

Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.

9.
Environ Pollut ; 196: 125-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463705

RESUMO

The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n = 51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p < 0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n = 20)and brown bran (n = 31) (Wilcoxon rank sum, p = 0.06-0.91). Compared to all elements in rice,rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson'sr = 0.33, p < 0.05) and total mercury (r = 0.44, p < 0.05), while strontium (i.e., tracer for xylemtransport) was least correlated with total mercury and methylmercury (r < 0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem.


Assuntos
Metaloides/análise , Compostos de Metilmercúrio/análise , Oryza/química , Arsênio/análise , Cádmio/análise , Monitoramento Ambiental , Madagáscar , Manganês/análise , Mercúrio/análise , Estudos Retrospectivos , Selênio/análise , Zinco/análise
10.
Lithos ; 125(1-2): 825-835, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26523071

RESUMO

The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr-Nd-Pb-Hf isotopes of the alkaline suite of rocks combined with new precise K-Ar and 40Ar/39Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively 'dry' conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This suggests that at that time, rift tectonics in the Mid-Arctic Ocean most likely had also affected the North-Asian continent, causing volcanic activity in the Chersky belt, before the regional geodynamic regime changed from a tensional to compressional. Our conclusions contribute not only to the understanding of volcanism in the Chersky seismic belt (NE-Russia) but also to general aspects of plate dynamics between the Eurasian and North American continent.

11.
Anal Chim Acta ; 665(2): 200-7, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20417331

RESUMO

A novel method, combining isotope dilution with standard additions, was developed for the analysis of eight elements (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) in seawater. The method requires just 12 mL of sample and employs an off-line pre-concentration step using the commercially available chelating resin Toyopearl AF-Chelate-650M prior to determination by high resolution inductively coupled plasma magnetic sector mass spectrometry (ICP-MS). Acidified samples were spiked with a multi-element standard of six isotopes ((57)Fe, (62)Ni, (65)Cu, (68)Zn, (111)Cd and (207)Pb) enriched over natural abundance. In addition, standard additions of a mixed Co and Mn standard were performed on sub-sets of the same sample. All samples were irradiated using a low power (119 mW cm(-2); 254 nm) UV system, to destroy organic ligands, before pre-concentration and extraction from the seawater matrix. Ammonium acetate was used to raise the pH of the 12 mL sub-samples (off-line) to pH 6.4+/-0.2 prior to loading onto the chelating resin. The extracted metals were eluted using 1.0 M Q-HNO(3) and determined using ICP-MS. The method was verified through the analysis of certified reference material (NASS-5) and the SAFe inter-comparison samples (S1 and D2), the results of which are in good agreement with the certified and reported consensus values. We also present vertical profiles of the eight metals taken from the Bermuda Atlantic Time Series (BATS) station collected during the GEOTRACES inter-comparison cruise in June 2008.


Assuntos
Espectrometria de Massas/métodos , Metais/análise , Água do Mar/química , Cádmio/análise , Cobalto/análise , Cobre/análise , Concentração de Íons de Hidrogênio , Ferro/análise , Marcação por Isótopo , Chumbo/análise , Magnetismo , Manganês/análise , Metais/química , Níquel/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...