Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(20): 9572-9, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24728561

RESUMO

Sulphur dioxide (SO2), a known industrial pollutant and pulmonary irritant, is emitted to the atmosphere in excess of 120 Mt per annum. Great strides have been taken to reduce SO2 emissions, but with the growth of specifically China, and to a lesser extent India, it is on the rise again. The electrolysis of aqueous solutions of dissolved SO2 holds huge environmental potential in that SO2 is converted to sulphuric acid (H2SO4) and at the same time hydrogen gas is produced. A further benefit or incentive is that a sulphur depolarised electrolyser (SDE) operates at an applied potential that is about one volt lower than that of a regular water electrolyser. In taking this technology forward the greatest improvement to be made is in developing a suitable electrocatalyst, which is also the 'lowest hanging fruit' in that very limited research and development has been conducted on the electrocatalyst for this process. In this work, density functional theory is employed to model the electro-oxidation of SO2 on single crystal planes of the 4d and 5d transition metals. Two reaction mechanisms are considered, a HSO3 intermediate pathway and a SO3 intermediate pathway. The binding energies of all intermediates are found to scale with the surface reactivity (measured as the adsorption of OH). Irrespective of the pathway water needs to be activated and reduction of SO2 to elemental sulphur must be avoided. This requirement alone calls for an electrode potential of at least 0.7-0.8 V for all the investigated transition metals and thus challenges the proclaimed goal to operate the SDE at 0.6 V. A high chemical barrier is further found to severely limit the oxidation reaction on reactive metals. A much higher catalytic activity can be obtained on precious metals but at the cost of running the reaction at high overpotentials.

2.
Phys Chem Chem Phys ; 15(25): 10321-5, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23703376

RESUMO

Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity of electrochemical interfaces.

3.
Phys Chem Chem Phys ; 15(23): 9326-34, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661187

RESUMO

The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel tandem cathode design where the full oxygen reduction, involving four electron-transfer steps, is divided into formation (equilibrium potential 0.70 V) followed by reduction (equilibrium potential 1.76 V) of hydrogen peroxide. The two part reactions contain only two electron-transfer steps and one reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides - SrTiO3(100), CaTiO3(100) and WO3(100) - are suggested for the subsequent reduction step.

4.
Phys Chem Chem Phys ; 15(18): 6769-72, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549289

RESUMO

The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

5.
Nat Mater ; 10(6): 434-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21516095

RESUMO

The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo(3)S(4)) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by density functional theory calculations of the Mo(3)S(4) clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.


Assuntos
Hidrogênio/química , Platina/química , Silício/química , Luz Solar , Catálise , Semicondutores
6.
Phys Chem Chem Phys ; 12(35): 10536-41, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20607150

RESUMO

A general scheme for high-throughput screening of electrocatalysts is presented. By systematically exploiting a collection of theoretical and experimental materials databases, supplemented with quantum mechanical calculations, it locates systems that meet a set of pre-imposed selection criteria. As an example, the scheme is used to identify a binary "substrate-overlayer" electrocatalytic system for the hydrogen evolution reaction. The best catalysts found in this screening are based on Cu and W. The hydrogen evolution activity of W-Cu catalysts is evaluated by means of cyclic voltammetry. It turns out to be considerably more active than any of its constituents, pure W and Cu.

7.
Phys Rev Lett ; 101(21): 215902, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19113425

RESUMO

Nuclear quantum effects on proton transfer and reorientation in BaZrO3 is investigated theoretically using the ab initio path-integral molecular-dynamics simulation technique. The result demonstrates that adding quantum fluctuations has a large effect on, in particular, the transfer barrier. The corresponding rates and diffusion coefficient are evaluated using the path-centroid transition state theory. In contrast with what is found assuming classical mechanics for the nuclear motion, the reorientation step becomes rate limiting below 600 K.

8.
Faraday Discuss ; 134: 247-65; discussion 315-29, 415-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17326572

RESUMO

Density functional calculations have been used to study the electronic structure, preferred sites in the lattice, formation energies and vibrational frequencies for hydrogen interstitials in different charge states in the cubic phase of perovskite-structured BaZrO3. By combining ab initio results with thermodynamic modeling, defect formation at finite temperature and pressure has been investigated. We demonstrate how the site selectivity and spatial distribution of dopant atoms in the lattice can be affected by changes in the environmental conditions (atomic chemical potentials, oxygen partial pressure and temperature) used during processing of the material. In addition, we have calculated the thermodynamic parameters of the water uptake reaction for an acceptor-doped BaZrO3 crystal in equilibrium with a humid atmosphere. The interaction energies between a protonic defect and the investigated Ga, Gd, In, Nd, Sc, and Y dopants were found to be attractive, and we show that a simple model of defect association may reproduce an experimentally observed trend in the hydration enthalpy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...