Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Neurol Sci ; 460: 123020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642488

RESUMO

INTRODUCTION: Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS: Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS: Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS: This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.


Assuntos
Calcinose , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Masculino , Feminino , Calcinose/genética , Calcinose/diagnóstico por imagem , Suécia/epidemiologia , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Encefalopatias/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/líquido cefalorraquidiano , Tomografia Computadorizada por Raios X , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Sci Adv ; 10(4): eadj1354, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266095

RESUMO

The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Transtornos da Memória , Masculino , Feminino , Humanos , Animais , Camundongos , Idoso , Colesterol 24-Hidroxilase , Transtornos da Memória/etiologia , Colesterol , Cognição , Doença de Alzheimer/genética , Estrogênios
3.
J Steroid Biochem Mol Biol ; 234: 106387, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648096

RESUMO

The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3ß-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.


Assuntos
Oxisteróis , Esteroide Hidroxilases , Animais , Camundongos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Hidroxicolesteróis/metabolismo , Oxisteróis/metabolismo , Cognição , Modelos Animais de Doenças , Camundongos Knockout , Glucose
4.
Glia ; 71(6): 1414-1428, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779429

RESUMO

Oxidized cholesterol metabolite 27-hydroxycholesterol (27-OH) is a potential link between hypercholesterolemia and neurodegenerative diseases since unlike peripheral cholesterol, 27-OH is transported across the blood-brain barrier. However, the effects of high 27-OH levels on oligodendrocyte function remain unexplored. We hypothesize that during hypercholesterolemia 27-OH may impact oligodendrocytes and myelin and thus contribute to the disconnection of neural networks in neurodegenerative diseases. To test this idea, we first investigated the effects of 27-OH in cultured oligodendrocytes and found that it induces cell death of immature O4+ /GalC+ oligodendrocytes along with stimulating differentiation of PDGFR+ oligodendrocyte progenitors (OPCs). Next, transgenic mice with increased systemic 27-OH levels (Cyp27Tg) underwent behavioral testing and their brains were immunohistochemically stained and lysed for immunoblotting. Chronic exposure to 27-OH in mice resulted in increased myelin basic protein (MBP) but not 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) or myelin oligodendrocyte glycoprotein (MOG) levels in the corpus callosum and cerebral cortex. Intriguingly, we also found impairment of spatial learning suggesting that subtle changes in myelinated axons of vulnerable areas like the hippocampus caused by 27-OH may contribute to impaired cognition. Finally, we found that 27-OH levels in cerebrospinal fluid from memory clinic patients were associated with levels of the myelination regulating CNPase, independently of Alzheimer's disease markers. Thus, 27-OH promotes OPC differentiation and is toxic to immature oligodendrocytes as well as it subtly alters myelin by targeting oligodendroglia. Taken together, these data indicate that hypercholesterolemia-derived higher 27-OH levels change the oligodendrocytic capacity for appropriate myelin remodeling which is a crucial factor in neurodegeneration and aging.


Assuntos
Hipercolesterolemia , Substância Branca , Camundongos , Animais , Substância Branca/metabolismo , Hipercolesterolemia/metabolismo , Encéfalo/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Camundongos Transgênicos
5.
Brain Sci ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358376

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is the most common form of hydrocephalus in the adult population, and is often treated with cerebrospinal fluid (CSF) drainage using a ventriculoperitoneal (VP) shunt. Symptoms of iNPH include gait impairment, cognitive decline, and urinary incontinence. The pathophysiology behind the symptoms of iNPH is still unknown, and no reliable biomarkers have been established to date. The aim of this study was to investigate the possible use of the oxysterols as biomarkers in this disease. CSF levels of the oxysterols 24S- and 27-hydroxycholesterol, as well as the major metabolite of 27-hydroxycholesterol, 7 alpha hydroxy-3-oxo-4-cholestenoic acid (7HOCA), were measured in iNPH-patients before and after treatment with a VP-shunt. Corresponding measurements were also performed in healthy controls. VP-shunt treatment significantly increased the levels of 7HOCA and 24S-hydroxycholesterol in CSF (p = 0.014 and p = 0.037, respectively). The results are discussed in relation to the beneficial effects of VP-shunt treatment. Furthermore, the possibility that CSF drainage may reduce an inhibitory effect of transiently increased pressure on the metabolic capacity of neuronal cells in the brain is discussed. This capacity includes the elimination of cholesterol by the 24S-hydroxylase mechanisms.

6.
Mol Neurobiol ; 58(12): 6063-6076, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34449045

RESUMO

Alterations in cholesterol metabolism in the brain have a major role in the physiology of Alzheimer's disease (AD). Oxysterols are cholesterol metabolites with multiple implications in memory functions and in neurodegeneration. Previous studies have shown detrimental effects of cholesterol metabolites in neurons, but its effect in glial cells is unknown. We used a high-fat/high-cholesterol diet in mice to study the effects of hypercholesterolemia over the alarmin S100A8 cascade in the hippocampus. Using CYP27Tg, a transgenic mouse model, we show that the hypercholesterolemia influence on the brain is mediated by the excess of 27-hydroxycholesterol (27-OH), a cholesterol metabolite. We also employed an acute model of 27-OH intraventricular injection in the brain to study RAGE and S100A8 response. We used primary cultures of neurons and astrocytes to study the effect of high levels of 27-OH over the S100A8 alarmin cascade. We report that a high-fat/high-cholesterol diet leads to an increase in S100A8 production in the brain. In CYP27Tg, we report an increase of S100A8 and its receptor RAGE in the hippocampus under elevated 27-OH in the brain. Using siRNA, we found that 27-OH upregulation of RAGE in astrocytes and neurons is mediated by the nuclear receptor RXRγ. Silencing RXRγ in neurons prevented 27-OH-mediated upregulation of RAGE. These results show that S100A8 alarmin and RAGE respond to high levels of 27-OH in the brain in both neurons and astrocytes through RXRγ. Our study supports the notion that 27-OH mediates detrimental effects of hypercholesterolemia to the brain via alarmin signaling.


Assuntos
Alarminas/metabolismo , Encéfalo/metabolismo , Calgranulina A/metabolismo , Hidroxicolesteróis/metabolismo , Hipercolesterolemia/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
7.
Innov Clin Neurosci ; 18(1-3): 11-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150357

RESUMO

Niemann-Pick Type C disease (NPC) is a rare, incurable, autosomal-recessive, lysosomal storage disorder with protean and progressive neurovisceral manifestations characterized by accumulation of intracellular unesterified cholesterol. The investigational use of 2-hydroxypropyl-beta-cyclodextrin (HP-ß-CD) in the treatment of NPC has shown promising results in improving life expectancy and reducing neurological damage in this patient population. This case report describes two children with the neurological form of NPC: a 5-year-old male patient in advanced stage of the disease and an 11-year-old female patient in moderately advanced stage. Despite treatment with the enzyme inhibitor, miglustat, both patients continued to exhibit severe neurodegeneration. High intrathecal (900mg) and low intravenous (350-500mg/kg) doses of HP-ß-CD (Trappsol®Cyclo™) were administrated twice monthly to the patients in addition to miglustat therapy. The patients were monitored clinically as well as by imaging, laboratory, and biomarker (e.g., total tau protein [T-tau]; phosphorylated tau [P-tau]; neurofilament light [NFL], oxysterols) studies over a period of 16 to 22 months. The combination therapy of miglustat and HP-ß-CD resulted in disease stabilization in both patients. The combination therapy demonstrated a good safety profile, and no adverse effects on hearing were observed. Additionally, CSF biomarkers appeared useful in monitoring neuronal damage. Large, randomized studies are needed to confirm these findings.

8.
Alzheimers Res Ther ; 13(1): 56, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676572

RESUMO

BACKGROUND: 27-Hydroxycholesterol (27-OH), the main circulating oxysterol in humans and the potential missing link between peripheral hypercholesterolemia and Alzheimer's disease (AD), has not been investigated previously in relation to cognition and neuroimaging markers in the context of preventive interventions. METHODS: The 2-year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) included older individuals (60-77 years) at increased risk for dementia but without dementia or substantial cognitive impairment from the general population. Participants were randomized to a multidomain intervention (diet, exercise, cognitive training, and vascular risk management) or control group (general health advice) in a 1:1 ratio. Outcome assessors were masked to group allocation. This FINGER exploratory sub-study included 47 participants with measures of 27-OH, cognition, brain MRI, brain FDG-PET, and PiB-PET. Linear regression models were used to assess the cross-sectional and longitudinal associations between 27-OH, cognition, and neuroimaging markers, considering several potential confounders/intervention effect modifiers. RESULTS: 27-OH reduction during the intervention was associated with improvement in cognition (especially memory). This was not observed in the control group. The intervention reduced 27-OH particularly in individuals with the highest 27-OH levels and younger age. No associations were found between changes in 27-OH levels and neuroimaging markers. However, at baseline, a higher 27-OH was associated with lower total gray matter and hippocampal volume, and lower cognitive scores. These associations were unaffected by total cholesterol levels. While sex seemed to influence associations at baseline, it did not affect longitudinal associations. CONCLUSION: 27-OH appears to be a marker not only for dementia/AD risk, but also for monitoring the effects of preventive interventions on cholesterol metabolism. TRIAL REGISTRATION: ClinicalTrials.gov , NCT01041989 . Registered on 4 January 2010.


Assuntos
Cognição , Disfunção Cognitiva , Idoso , Encéfalo/diagnóstico por imagem , Estudos Transversais , Finlândia , Humanos , Hidroxicolesteróis , Imageamento por Ressonância Magnética , Neuroimagem , Testes Neuropsicológicos
9.
J Lipid Res ; 62: 100065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713671

RESUMO

Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. The data collected and analyzed from bears were also compared with those from healthy humans. In bears, the cholesterol ester, unesterified cholesterol, TG, and phospholipid contents of VLDL and LDL were higher in winter than in summer. The percentage lipid composition of LDL differed between bears and humans but did not change seasonally in bears. Bear LDL was larger, richer in TGs, showed prebeta electrophoretic mobility, and had 5-10 times lower binding to arterial PGs than human LDL. Finally, plasma CEC was higher in bears than in humans, especially the HDL fraction when mediated by ABCA1. These results suggest that in brown bears the absence of early atherogenesis is likely associated with a lower affinity of LDL for arterial PGs and an elevated CEC of bear plasma.


Assuntos
Hibernação , Lipoproteínas , Ursidae , Animais , Colesterol/sangue , Lipoproteínas/sangue , Estações do Ano , Ursidae/fisiologia
10.
Br J Pharmacol ; 178(16): 3194-3204, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33345295

RESUMO

BACKGROUND AND PURPOSE: The cerebrospinal fluid (CSF)/plasma albumin ratio (QAlb) is believed to reflect the integrity of the blood-brain barrier (BBB). Recently, we reported that QAlb is lower in females. This may be important for uptake of neurotoxic 27-hydroxycholesterol (27OH) by the brain in particular because plasma levels of 27OH are higher in males. We studied sex differences in the relation between CSF and plasma levels of 27OH and its major metabolite 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) with QAlb. We tested the possibility of sex differences in the brain metabolism of 27OH and if its flux into the brain disrupted integrity of the BBB. EXPERIMENTAL APPROACH: We have examined our earlier studies looking for sex differences in CSF levels of oxysterols and their relation to QAlb. We utilized an in vitro model for the BBB with primary cultured brain endothelial cells to test if 27OH has a disruptive effect on this barrier. We measured mRNA and protein levels of CYP7B1 in autopsy brain samples. KEY RESULTS: The correlation between CSF levels of 27OH and QAlb was higher in males whereas, with 7HOCA, the correlation was higher in females. No significant sex difference in the expression of CYP7B1 mRNA in brain autopsy samples. A correlation was found between plasma levels of 27OH and QAlb. No support was obtained for the hypothesis that plasma levels of 27OH have a disruptive effect on the BBB. CONCLUSIONS AND IMPLICATIONS: The sex differences are discussed in relation to negative effects of 27OH on different brain functions. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Células Endoteliais , Caracteres Sexuais , Encéfalo , Feminino , Humanos , Hidroxicolesteróis , Masculino
12.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246156

RESUMO

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/genética , Colesterol/metabolismo , Cromatografia Líquida , Desidrocolesteróis/química , Humanos , Lipogênese/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia
13.
Scand J Clin Lab Invest ; 80(5): 395-400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32323600

RESUMO

Bile acids are known to pass the blood-brain barrier and are present at low concentrations in the brain. In a previous work, it was shown that subdural hematomas are enriched with bile acids and that the levels in such hematomas are higher than in the peripheral circulation. The mechanism behind this enrichment was never elucidated. Bile acids have a high affinity to albumin, and subdural hematomas contain almost as high albumin levels as the peripheral circulation. A subdural hematoma is encapsulated by fibrin which may allow passage of small molecules like bile acids. We hypothesized that bile acids originating from the circulation may be 'trapped' in the albumin in subdural hematomas. In the present work, we measured the conjugated and unconjugated primary bile acids cholic acid and chenodeoxycholic acid in subdural hematomas and in peripheral circulation of 24 patients. In most patients, the levels of both conjugated and free bile acids were higher in the hematomas than in the circulation, but the enrichment of unconjugated bile acids was markedly higher than that of conjugated bile acids. In patients with a known time interval between the primary bleeding and the operation, there was a correlation between this time period and the accumulation of bile acids. This relation was most obvious for unconjugated bile acids. The results are consistent with a continuous flux of bile acids, in particular unconjugated bile acids, across the blood-brain barrier. We discuss the possible physiological importance of bile acid accumulation in subdural hematomas.


Assuntos
Albuminas/metabolismo , Ácido Quenodesoxicólico/metabolismo , Ácido Cólico/metabolismo , Hematoma Subdural/metabolismo , Espaço Subdural/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Feminino , Fibrina/metabolismo , Hematoma Subdural/patologia , Hematoma Subdural/cirurgia , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Ligação Proteica , Espaço Subdural/irrigação sanguínea , Espaço Subdural/patologia , Espaço Subdural/cirurgia
14.
BMC Vet Res ; 16(1): 32, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005242

RESUMO

BACKGROUND: Various intestinal morphological alterations have been reported in cultured fish fed diets with high contents of plant ingredients. Since 2000, salmon farmers have reported symptoms indicating an intestinal problem, which we suggest calling lipid malabsorption syndrome (LMS), characterized by pale and foamy appearance of the enterocytes of the pyloric caeca, the result of lipid accumulation. The objective of the present study was to investigate if insufficient dietary choline may be a key component in development of the LMS. RESULTS: The results showed that Atlantic salmon (Salmo salar), average weight 362 g, fed a plant based diet for 79 days developed signs of LMS. In fish fed a similar diet supplemented with 0.4% choline chloride no signs of LMS were seen. The relative weight of the pyloric caeca was 40% lower, reflecting 65% less triacylglycerol content and histologically normal gut mucosa. Choline supplementation further increased specific fish growth by 18%. The concomitant alterations in intestinal gene expression related to phosphatidylcholine synthesis (chk and pcyt1a), cholesterol transport (abcg5 and npc1l1), lipid metabolism and transport (mgat2a and fabp2) and lipoprotein formation (apoA1 and apoAIV) confirmed the importance of choline in lipid turnover in the intestine and its ability to prevent LMS. Another important observation was the apparent correlation between plin2 expression and degree of enterocyte hyper-vacuolation observed in the current study, which suggests that plin2 may serve as a marker for intestinal lipid accumulation and steatosis in fish. Future research should be conducted to strengthen the knowledge of choline's critical role in lipid transport, phospholipid synthesis and lipoprotein secretion to improve formulations of plant based diets for larger fish and to prevent LMS. CONCLUSIONS: Choline prevents excessive lipid accumulation in the proximal intestine and is essential for Atlantic salmon in seawater.


Assuntos
Colina/administração & dosagem , Dieta/veterinária , Doenças dos Peixes/dietoterapia , Salmo salar/metabolismo , Ração Animal/análise , Animais , Aquicultura , Ceco/patologia , Enterócitos , Mucosa Intestinal , Intestinos/patologia , Metabolismo dos Lipídeos , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Transcriptoma
15.
Br J Nutr ; 123(10): 1081-1093, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32037990

RESUMO

Foamy, whitish appearance of the pyloric caeca, reflecting elevated lipid content, histologically visible as hypervacuolation, is frequently observed in Atlantic salmon fed high-plant diets. Lipid malabsorption syndrome (LMS) is suggested as term for the phenomenon. Earlier studies have shown that insufficient supply of phospholipids may cause similar symptoms. The objective of the present study was to strengthen knowledge on the role of choline, the key component of phosphatidylcholine, in development of LMS as well as finding the dietary required choline level in Atlantic salmon. A regression design was chosen to be able to estimate the dietary requirement level of choline, if found essential for the prevention of LMS. Atlantic salmon (456 g) were fed diets supplemented with 0, 392, 785, 1177, 1569, 1962, 2354, 2746 and 3139 mg/kg choline chloride. Fish fed the lowest-choline diet had pyloric caeca with whitish foamy surface, elevated relative weight, and the enterocytes were hypervacuolated. These characteristics diminished with increasing choline level and levelled off at levels of 2850, 3593 and 2310 mg/kg, respectively. The concomitant alterations in expression of genes related to phosphatidylcholine synthesis, cholesterol biosynthesis, lipid transport and storage confirmed the importance of choline in lipid turnover in the intestine and ability to prevent LMS. Based on the observations of the present study, the lowest level of choline which prevents LMS and intestinal lipid hypervacuolation in post-smolt Atlantic salmon is 3·4 g/kg. However, the optimal level most likely depends on the feed intake and dietary lipid level.


Assuntos
Ração Animal/análise , Colina/administração & dosagem , Gorduras na Dieta/administração & dosagem , Enterócitos/metabolismo , Salmo salar/metabolismo , Animais , Ceco/metabolismo , Suplementos Nutricionais , Metabolismo dos Lipídeos , Lipídeos/análise , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/prevenção & controle , Necessidades Nutricionais , Água do Mar
17.
Mol Ther Methods Clin Dev ; 15: 359-370, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31828178

RESUMO

Hereditary spastic paraplegia type 5 is a neurodegenerative disease caused by loss-of-function mutations in the CYP7B1 gene encoding the oxysterol 7-α-hydroxylase involved in bile acid synthesis in the liver. Lack of CYP7B1 leads to an accumulation of its oxysterol substrates, in particular 25-hydroxycholesterol and 27-hydroxycholesterol that are able to cross the blood-brain barrier and have neurotoxic properties. A potential therapeutic strategy for SPG5 is the replacement of CYP7B1 by administration of mRNA. Here, we studied the intravenous application of formulated mouse and human CYP7B1 mRNA in mice lacking the endogenous Cyp7b1 gene. A single-dose injection of either mouse or human CYP7B1 mRNA led to a pronounced degradation of oxysterols in liver and serum within 2 days of treatment. Pharmacokinetics indicate a single injection of human CYP7B1 mRNA to be effective in reducing oxysterols for at least 5 days. Repetitive applications of mRNA were safe for at least 17 days and resulted in a significant reduction of neurotoxic oxysterols not only in liver and serum but also to some extent in the brain. Our study highlights the potential to use mRNA as a novel therapy to treat patients with SPG5 disease.

18.
J Steroid Biochem Mol Biol ; 195: 105475, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31541728

RESUMO

While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These "proof of principle" data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1.


Assuntos
Colestenos/sangue , Colesterol 24-Hidroxilase/genética , Oxisteróis/sangue , Animais , Deutério , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
J Steroid Biochem Mol Biol ; 190: 115-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940596

RESUMO

Serum concentrations of lathosterol, the plant sterols campesterol and sitosterol and the cholesterol metabolite 5α-cholestanol are widely used as surrogate markers of cholesterol synthesis and absorption, respectively. Increasing numbers of laboratories utilize a broad spectrum of well-established and recently developed methods for the determination of cholesterol and non-cholesterol sterols (NCS). In order to evaluate the quality of these measurements and to identify possible sources of analytical errors our group initiated the first international survey for cholesterol and NCS. The cholesterol and NCS survey was structured as a two-part survey which took place in the years 2013 and 2014. The first survey part was designed as descriptive, providing information about the variation of reported results from different laboratories. A set of two lyophilized pooled sera (A and B) was sent to twenty laboratories specialized in chromatographic lipid analysis. The different sterols were quantified either by gas chromatography-flame ionization detection, gas chromatography- or liquid chromatography-mass selective detection. The participants were requested to determine cholesterol and NCS concentrations in the provided samples as part of their normal laboratory routine. The second part was designed as interventional survey. Twenty-two laboratories agreed to participate and received again two different lyophilized pooled sera (C and D). In contrast to the first international survey, each participant received standard stock solutions with defined concentrations of cholesterol and NCS. The participants were requested to use diluted calibration solutions from the provided standard stock solutions for quantification of cholesterol and NCS. In both surveys, each laboratory used its own internal standard (5α-cholestane, epicoprostanol or deuterium labelled sterols). Main outcome of the survey was, that unacceptably high interlaboratory variations for cholesterol and NCS concentrations are reported, even when the individual laboratories used the same calibration material. We discuss different sources of errors and recommend all laboratories analysing cholesterol and NCS to participate in regular quality control programs.


Assuntos
Colesterol/sangue , Fitosteróis/sangue , Colestanol/sangue , Colesterol/análogos & derivados , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Humanos , Sitosteroides/sangue , Inquéritos e Questionários
20.
J Biol Chem ; 294(11): 4169-4176, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655290

RESUMO

The liver X receptors Lxrα/NR1H3 and Lxrß/NR1H2 are ligand-dependent nuclear receptors critical for midbrain dopaminergic (mDA) neuron development. We found previously that 24(S),25-epoxycholesterol (24,25-EC), the most potent and abundant Lxr ligand in the developing mouse midbrain, promotes mDA neurogenesis in vitro In this study, we demonstrate that 24,25-EC promotes mDA neurogenesis in an Lxr-dependent manner in the developing mouse midbrain in vivo and also prevents toxicity induced by the Lxr inhibitor geranylgeranyl pyrophosphate. Furthermore, using MS, we show that overexpression of human cholesterol 24S-hydroxylase (CYP46A1) increases the levels of both 24(S)-hydroxycholesterol (24-HC) and 24,25-EC in the developing midbrain, resulting in a specific increase in mDA neurogenesis in vitro and in vivo, but has no effect on oculomotor or red nucleus neurogenesis. 24-HC, unlike 24,25-EC, did not affect in vitro neurogenesis, indicating that the neurogenic effect of 24,25-EC on mDA neurons is specific. Combined, our results indicate that increased levels of 24,25-EC in vivo, by intracerebroventricular delivery in WT mice or by overexpression of its biosynthetic enzyme CYP46A1, specifically promote mDA neurogenesis. We propose that increasing the levels of 24,25-EC in vivo may be a useful strategy to combat the loss of mDA neurons in Parkinson's disease.


Assuntos
Colesterol 24-Hidroxilase/biossíntese , Colesterol/análogos & derivados , Dopamina/metabolismo , Mesencéfalo/metabolismo , Neurogênese , Animais , Células Cultivadas , Colesterol/biossíntese , Feminino , Humanos , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...