Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(10): 1536-1549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869866

RESUMO

Human neutrophils are components of the innate immune system and are the most abundant white blood cells in the circulation. They are professional phagocytes and express several G protein-coupled receptors (GPCRs), which are essential for proper neutrophil functions. So far, the two formyl peptide receptors, FPR1 and FPR2, have been the most extensively studied group of neutrophil GPCRs, but recently, a new group, the free fatty acid (FFA) receptors, has attracted growing attention. Neutrophils express two FFA receptors, GPR84 and FFA2, which sense medium- and short-chain fatty acids respectively, and display similar activation profiles. The exact pathophysiological role of GPR84 is not yet fully understood, but it is generally regarded as a pro-inflammatory receptor that mediates neutrophil activation. In this review, we summarize current knowledge of how GPR84 affects human neutrophil functions and discuss the regulatory mechanisms that control these responses, focusing on the similarities and differences in comparison to the two FPRs and FFA2. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Assuntos
Neutrófilos , Transdução de Sinais , Humanos , Receptores de Formil Peptídeo , Fagócitos , Receptores Acoplados a Proteínas G
2.
Biochem Pharmacol ; 220: 115995, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151076

RESUMO

Neutrophils express several G protein-coupled receptors (GPCRs) connected to intracellular Gαi or Gαq containing G proteins for down-stream signaling. To dampen GPCR mediated inflammatory processes, several inhibitors targeting the receptors and/or their down-stream signals, have been developed. Potent and selective inhibitors for Gαq containing G proteins are available, but potent and specific inhibitors of Gαi containing G proteins are lacking. Recently, Larixol, a compound extracted from the root of Euphorbia formosana, was shown to abolish human neutrophil functions induced by N-formyl-methionyl-leucyl-phenylalanine (fMLF), an agonist recognized by formyl peptide receptor 1 (FPR1) which couple to Gαi containing G proteins. The inhibitory effect was suggested to be due to interference with/inhibition of signals transmitted by ßγ complexes of the Gαi containing G proteins coupled to FPR1. In this study, we applied Larixol, obtained from two different commercial sources, to determine the receptor- and G protein- selectivity of this compound in human neutrophils. However, our data show that Larixol not only lacks inhibitory effect on neutrophil responses mediated through FPR1, but also on responses mediated through FPR2, a Gαi coupled GPCR closely related to FPR1. Furthermore, Larixol did not display any features as a selective inhibitor of neutrophil responses mediated through the Gαq coupled GPCRs for platelet activating factor and ATP. Hence, our results imply that the inhibitory effects described for the root extract of Euphorbia formosana are not mediated by Larixol and that the search for a selective inhibitor of G protein dependent signals generated by Gαi coupled neutrophil GPCRs must continue.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Humanos , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo
3.
Biochem Pharmacol ; : 115919, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952896

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal

4.
Front Immunol ; 14: 1233101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954595

RESUMO

We describe a female patient suffering from severe chronic non-bacterial osteomyelitis (CNO) with systemic inflammation and advanced malnutrition and complete deficiency of myeloperoxidase (MPO). CNO is a rare autoinflammatory bone disorder associated with dysregulation of the innate immune system. MPO deficiency is a genetic disorder with partial or complete absence of the phagocyte peroxidase MPO. MPO deficiency has no established clinical phenotype but reports indicate increased susceptibility to infection and chronic inflammation. The patient's symptoms began at 10 years of age with pain in the thighs, systemic inflammation and malnutrition. She was diagnosed with CNO at 14 years of age. Treatment with nonsteroidal anti-inflammatory drugs, corticosteroids, bisphosphonates or IL1-receptor antagonists (anakinra) did not relieve the symptoms. However, the patient responded instantly and recovered from her clinical symptoms when treated with TNFα blockade (adalimumab). Three years after treatment initiation adalimumab was withdrawn, resulting in rapid symptom recurrence. When reintroducing adalimumab, the patient promptly responded and went into remission. In addition to clinical and laboratory profiles, neutrophil functions (reactive oxygen species, ROS; neutrophil extracellular traps, NETs; degranulation; apoptosis; elastase activity) were investigated both in a highly inflammatory state (without treatment) and in remission (on treatment). At diagnosis, neither IL1ß, IL6, nor TNFα was significantly elevated in serum, but since TNFα blockade terminated the inflammatory symptoms, the disease was likely TNFα-driven. All neutrophil parameters were normal both during treatment and treatment withdrawal, except for MPO-dependent intracellular ROS- and NET formation. The role of total MPO deficiency for disease etiology and severity is discussed.


Assuntos
Desnutrição , Osteomielite , Feminino , Humanos , Adalimumab/uso terapêutico , Inflamação , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Criança , Adolescente
5.
Artigo em Inglês | MEDLINE | ID: mdl-37326842

RESUMO

OBJECTIVES: To investigate the influence of genetic factors on persistence to treatment of early rheumatoid arthritis (RA) with methotrexate (MTX) monotherapy. METHODS: We conducted a genome-wide association study (GWAS) in a sample of 3902 Swedish early RA patients initiating MTX in DMARD-monotherapy as their first ever DMARD. The outcome, short- and long-term persistence to this treatment, was defined as remaining on MTX at one and at three years, respectively, with no additional DMARDs added. As genetic predictors, we investigated individual SNPs, and a polygenic risk score (PRS) based on SNPs associated with RA risk. The SNP-based heritability of persistence was estimated overall and by RA serostatus. RESULTS: No individual SNP reached genome-wide significance (p < 5e-8), neither for persistence at one nor at three years. The RA PRS was not significantly associated with persistence at one (RR = 0.98 (0.96-1.01)) nor three years (RR = 0.96 (0.93-1.00)). The heritability for persistence was estimated to be 0.45 (0.15-0.75) at one year and 0.14 (0-0.40) at three years. Results in seropositive RA were comparable to those in the analysis of RA overall, while heritability estimates and PRS RRs were attenuated towards the null in seronegative RA. CONCLUSIONS: Despite being the largest GWAS on an MTX treatment outcome to date, no genome-wide significant associations were detected. The modest heritability observed, coupled with the broad spread of suggestively associated loci, indicate that genetic influence is of polygenic nature. Nevertheless, persistence to MTX monotherapy was lower in patients with a greater genetic disposition, per the PRS, towards RA.

6.
Biochem Pharmacol ; 211: 115529, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004778

RESUMO

Formyl peptide receptor 1 (FPR1), a G protein-coupled receptor expressed in phagocytes, recognizes short N-formylated peptides originating from proteins synthesized by bacteria and mitochondria. Such FPR1 agonists are important regulators of neutrophil functions and by that, determinants of inflammatory reactions. As FPR1 is implicated in promoting both pro-inflammatory and pro-resolving responses associated with inflammatory diseases, characterization of ligands that potently and selectively modulate FPR1 induced functions might be of high relevance. Accordingly, a number of FPR1 specific antagonists have been identified and shown to inhibit agonist binding or receptor down-stream signaling as well as neutrophil functions such as granule secretion and NADPH oxidase activity. The inhibitory effect on neutrophil chemotaxis induced by FPR1 agonists has generally not been part of basic antagonist characterization. In this study we show that the inhibitory effects on neutrophil chemotaxis of established FPR1 antagonists (i.e., cyclosporin H, BOC1 and BOC2) are limited. Our data demonstrate that the recently described small molecule AZ2158 is a potent and selective FPR1 antagonist in human neutrophils. In contrast to the already established FPR1 antagonists, AZ2158 also potently inhibits chemotaxis. Whereas the cyclosporin H inhibition was agonist selective, AZ2158 inhibited the FPR1 response induced by both a balanced and a biased FPR1 agonist equally well. In accordance with the species specificity described for many FPR1 ligands, AZ2158 was not recognized by the mouse orthologue of FPR1. Our data demonstrate that AZ2158 may serve as an excellent tool compound for further mechanistic studies of human FPR1 mediated activities.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Humanos , Animais , Camundongos , Receptores de Formil Peptídeo/metabolismo , Quimiotaxia , Peptídeos/farmacologia , Peptídeos/metabolismo
7.
J Leukoc Biol ; 113(6): 577-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999365

RESUMO

Neutrophils express many surface receptors that sense environmental changes. One such sensor is FFAR2 (free fatty acid receptor 2), a receptor that detects gut microbiota-derived short-chain fatty acids. As such, FFAR2 has been regarded as a molecular link between metabolism and inflammation. Our recent studies on FFAR2, using its endogenous agonist propionate in combination with allosteric modulators, have identified several novel aspects of FFAR2 regulation. A recent study has also identified the ketone body acetoacetate as an endogenous ligand for mouse FFAR2. Whether human FFAR2 also recognizes acetoacetate and how this recognition modulates human neutrophil functions has not been investigated. In this study, we found that acetoacetate can induce a decrease of cAMP and translocation of ß-arrestin in cells overexpressing FFAR2. In addition, we show that similar to propionate, FFAR2-specific allosteric modulators enhance acetoacetate-induced transient rise in cytosolic calcium, production of reactive oxygen species, and cell migration in human neutrophils. In summary, we demonstrate that human neutrophils recognize the ketone body acetoacetate through FFAR2. Thus, our data further highlight the key role of FFAR2 in inflammation and metabolism.


Assuntos
Propionatos , Receptores Acoplados a Proteínas G , Humanos , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Propionatos/farmacologia , Neutrófilos/metabolismo , Acetoacetatos/farmacologia , Acetoacetatos/metabolismo , Corpos Cetônicos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
8.
Immunol Rev ; 314(1): 69-92, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285739

RESUMO

Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.


Assuntos
Neutrófilos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Regulação Alostérica
9.
Front Mol Biosci ; 9: 942406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213120

RESUMO

The primary aim of the study was to identify inflammatory markers relevant for osteoarthritis (OA)-related systemic (plasma) and local (synovial fluid, SF) inflammation. From this, we looked for inflammatory markers that coincided with the increased amount of O-linked Tn antigen (GalNAcα1-Ser/Thr) glycan on SF lubricin. Inflammatory markers in plasma and SF in OA patients and controls were measured using a 44-multiplex immunoassay. We found consistently 29 markers detected in both plasma and SF. The difference in their concentration and the low correlation when comparing SF and plasma suggests an independent inflammatory environment in the two biofluids. Only plasma MCP-4 and TARC increased in our patient cohort compared to control plasma. To address the second task, we concluded that plasma markers were irrelevant for a direct connection with SF glycosylation. Hence, we correlated the SF-inflammatory marker concentrations with the level of altered glycosylation of SF-lubricin. We found that the level of SF-IL-8 and SF-MIP-1α and SF-VEGFA in OA patients displayed a positive correlation with the altered lubricin glycosylation. Furthermore, when exposing fibroblast-like synoviocytes from both controls and OA patients to glycovariants of recombinant lubricin, the secretion of IL-8 and MIP-1α and VEGFA were elevated using lubricin with Tn antigens, while lubricin with sialylated and nonsialylated T antigens had less or no measurable effect. These data suggest that truncated glycans of lubricin, as found in OA, promote synovial proinflammatory cytokine production and exacerbate local synovial inflammation.

10.
Ann Rheum Dis ; 81(8): 1085-1095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470158

RESUMO

OBJECTIVES: To find causal genes for rheumatoid arthritis (RA) and its seropositive (RF and/or ACPA positive) and seronegative subsets. METHODS: We performed a genome-wide association study (GWAS) of 31 313 RA cases (68% seropositive) and ~1 million controls from Northwestern Europe. We searched for causal genes outside the HLA-locus through effect on coding, mRNA expression in several tissues and/or levels of plasma proteins (SomaScan) and did network analysis (Qiagen). RESULTS: We found 25 sequence variants for RA overall, 33 for seropositive and 2 for seronegative RA, altogether 37 sequence variants at 34 non-HLA loci, of which 15 are novel. Genomic, transcriptomic and proteomic analysis of these yielded 25 causal genes in seropositive RA and additional two overall. Most encode proteins in the network of interferon-alpha/beta and IL-12/23 that signal through the JAK/STAT-pathway. Highlighting those with largest effect on seropositive RA, a rare missense variant in STAT4 (rs140675301-A) that is independent of reported non-coding STAT4-variants, increases the risk of seropositive RA 2.27-fold (p=2.1×10-9), more than the rs2476601-A missense variant in PTPN22 (OR=1.59, p=1.3×10-160). STAT4 rs140675301-A replaces hydrophilic glutamic acid with hydrophobic valine (Glu128Val) in a conserved, surface-exposed loop. A stop-mutation (rs76428106-C) in FLT3 increases seropositive RA risk (OR=1.35, p=6.6×10-11). Independent missense variants in TYK2 (rs34536443-C, rs12720356-C, rs35018800-A, latter two novel) associate with decreased risk of seropositive RA (ORs=0.63-0.87, p=10-9-10-27) and decreased plasma levels of interferon-alpha/beta receptor 1 that signals through TYK2/JAK1/STAT4. CONCLUSION: Sequence variants pointing to causal genes in the JAK/STAT pathway have largest effect on seropositive RA, while associations with seronegative RA remain scarce.


Assuntos
Artrite Reumatoide , Estudo de Associação Genômica Ampla , Artrite Reumatoide/genética , Predisposição Genética para Doença/genética , Humanos , Interferon-alfa , Janus Quinases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteômica , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341806

RESUMO

In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by ß-arrestin recruitment data. The ROS production induced by a non ß-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this ß-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with ß-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , NADPH Oxidases , Neutrófilos , Receptores Acoplados a Proteínas G , beta-Arrestinas , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , NADP/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , beta-Arrestinas/metabolismo
12.
J Innate Immun ; 13(4): 242-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789297

RESUMO

Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of ß-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.


Assuntos
NADPH Oxidases , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Adenina , Humanos , Ativação de Neutrófilo , Neutrófilos , Fosfatos , Receptores Acoplados a Proteínas G
14.
J Leukoc Biol ; 109(2): 349-362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32531826

RESUMO

In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.


Assuntos
Líquido do Sulco Gengival/citologia , Isoantígenos/metabolismo , Neutrófilos/metabolismo , Periodontite/imunologia , Periodontite/patologia , Receptores de Superfície Celular/metabolismo , Artrite/imunologia , Artrite/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Líquido do Sulco Gengival/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Isoantígenos/sangue , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Periodontite/sangue , Periodontite/microbiologia , Receptores de Superfície Celular/sangue , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo , Doadores de Tecidos
15.
J Biol Chem ; 295(47): 16023-16036, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32928962

RESUMO

The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.


Assuntos
Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Osteoartrite/metabolismo , Proteoglicanas/metabolismo , Membrana Sinovial/metabolismo , Adulto , Idoso , Animais , Proteínas Sanguíneas/genética , Células CHO , Cricetulus , Feminino , Galectinas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/patologia , Proteoglicanas/genética , Membrana Sinovial/patologia
16.
J Innate Immun ; 12(6): 480-489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32829330

RESUMO

There is incomplete mechanistic understanding of the mobilization of neutrophils in the systemic and local compartment in smokers with chronic obstructive pulmonary disease (COPD). In this pilot study, we characterized how the adhesion molecules CD11b and CD62L, surface markers indicative of priming, are altered as neutrophils extravasate, and whether surface density of CD11b and CD62L differs between long-term tobacco smokers (LTS) with and without COPD compared with healthy never-smokers (HNS). Unstimulated blood neutrophils from LTS with (n = 5) and without (n = 9) COPD displayed lower surface density of CD62L compared with HNS (n = 8). In addition, surface density of CD11b was higher in bronchoalveolar lavage (BAL) neutrophils from LTS without COPD compared with those with COPD and HNS. Moreover, in BAL neutrophils from all study groups, CD62L was lower compared with matched blood neutrophils. In addition, BAL neutrophils responded with a further decrease in CD62L to ex vivo TNF stimulation. Thus, neutrophils in the airway lumen display a higher state of priming than systemic neutrophils and bear the potential to be further primed by local cytokines even with no smoking or the presence of COPD, findings that may represent a universal host defense mechanism against local bacteria. Moreover, systemic neutrophils are primed in LTS regardless of COPD. Further studies in larger materials are warranted to determine whether the priming of neutrophils is protective against COPD or merely preceding it.


Assuntos
Antígeno CD11b/metabolismo , Selectina L/metabolismo , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Sistema Respiratório/patologia , Adulto , Idoso , Circulação Sanguínea , Fumar Cigarros/efeitos adversos , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Regulação para Cima
17.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466527

RESUMO

Gout is an inflammatory disease caused by monosodium urate (MSU) crystals. The role of neutrophils in gout is less clear, although several studies have shown neutrophil extracellular trap (NET) formation in acutely inflamed joints of gout patients. MSU crystals are known to induce the production of reactive oxygen species (ROS) and NET formation in neutrophils isolated from blood, but there is inconclusive knowledge on the localization of ROS production as well as whether the ROS are required for NET formation. In this report we demonstrate that MSU crystals activate human neutrophils to produce ROS exclusively in intracellular compartments. Additionally, in vivo transmigrated neutrophils derived from experimental skin chambers displayed markedly increased ROS production as compared to resting blood neutrophils. We also confirmed that MSU stimulation potently induced NET formation, but this response was not primed in in vivo transmigrated neutrophils. In line with this we found that MSU-triggered NET formation was independent of ROS production and proceeded normally in neutrophils from patients with dysfunctional respiratory burst (chronic granulomatous disease (CGD) and complete myeloperoxidase (MPO) deficiency). Our data indicate that in vivo transmigrated neutrophils are markedly primed for oxidative responses to MSU crystals and that MSU triggered NET formation is independent of ROS production.


Assuntos
Gota/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Idoso , Células Cultivadas , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Peroxidase/metabolismo , Migração Transendotelial e Transepitelial , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
18.
ACS Pharmacol Transl Sci ; 3(2): 203-220, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296763

RESUMO

Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.

19.
Sci Rep ; 10(1): 4215, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144329

RESUMO

Lubricin (PRG4) is a mucin type protein that plays an important role in maintaining normal joint function by providing lubrication and chondroprotection. Improper lubricin modification and degradation has been observed in idiopathic osteoarthritis (OA), while the detailed mechanism still remains unknown. We hypothesized that the protease cathepsin G (CG) may participate in degrading lubricin in synovial fluid (SF). The presence of endogenous CG in SF was confirmed in 16 patients with knee OA. Recombinant human lubricin (rhPRG4) and native lubricin purified from the SF of patients were incubated with exogenous CG and lubricin degradation was monitored using western blot, staining by Coomassie or Periodic Acid-Schiff base in gels, and with proteomics. Full length lubricin (∼300 kDa), was efficiently digested with CG generating a 25-kDa protein fragment, originating from the densely glycosylated mucin domain (∼250 kDa). The 25-kDa fragment was present in the SF from OA patients, and the amount was increased after incubation with CG. A CG digest of rhPRG4 revealed 135 peptides and 72 glycopeptides, and confirmed that the protease could cleave in all domains of lubricin, including the mucin domain. Our results suggest that synovial CG may take part in the degradation of lubricin, which could affect the pathological decrease of the lubrication in degenerative joint disease.


Assuntos
Catepsina G/metabolismo , Glicoproteínas/metabolismo , Osteoartrite/fisiopatologia , Proteoma/metabolismo , Líquido Sinovial/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Glicopeptídeos , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade
20.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118689, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092308

RESUMO

The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.


Assuntos
Benzamidas/farmacologia , Neutrófilos/metabolismo , Fenilbutiratos/farmacologia , Receptores de Superfície Celular/agonistas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Benzamidas/química , Cálcio/metabolismo , Sinergismo Farmacológico , Humanos , Estrutura Molecular , NADPH Oxidases/metabolismo , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Fenilbutiratos/química , Propionatos/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...