Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334646

RESUMO

Protein aggregation is a predominant feature of many neurodegenerative diseases, including synucleinopathies, which are characterized by cellular inclusions containing α-Synuclein (αSyn) phosphorylated at serine 129 (pSer129). In the present study, we characterized the development of αSyn pre-formed fibril (PFF)-induced pSer129-αSyn pathology in F28tg mice overexpressing human wild-type αSyn, as well as in ex vivo organotypic cultures and in vitro primary cultures from the same mouse model. Concurrently, we collected cerebrospinal fluid (CSF) from mice and conditioned media from ex vivo and in vitro cultures and quantified the levels of neurofilament light chain (NFL), a biomarker of neurodegeneration. We found that the intra-striatal injection of PFFs induces the progressive spread of pSer129-αSyn pathology and microglial activation in vivo, as well as modest increases in NFL levels in the CSF. Similarly, PFF-induced αSyn pathology occurs progressively in ex vivo organotypic slice cultures and is accompanied by significant increases in NFL release into the media. Using in vitro primary hippocampal cultures, we further confirmed that pSer129-αSyn pathology and NFL release occur in a manner that correlates with the fibril dose and the level of the αSyn protein. Overall, we demonstrate that αSyn pathology is associated with NFL release across preclinical models of seeded αSyn aggregation and that the pharmacological inhibition of αSyn aggregation in vitro also significantly reduces NFL release.


Assuntos
Doenças Neurodegenerativas , Sinucleinopatias , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Filamentos Intermediários/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos/fisiologia
2.
ACS Omega ; 8(34): 31450-31467, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663501

RESUMO

A method to detect and quantify aggregated α-synuclein (αSYN) fibrils in vivo would drastically impact the current understanding of multiple neurodegenerative diseases, revolutionizing their diagnosis and treatment. Several efforts have produced promising scaffolds, but a notable challenge has hampered the establishment of a clinically successful αSYN positron emission tomography (PET) tracer: the requirement of high selectivity over the other misfolded proteins amyloid ß (Aß) and tau. By designing and screening a library of 2-styrylbenzothiazoles based on the selective fluorescent probe RB1, this study aimed at developing a selective αSYN PET tracer. [3H]PiB competition binding assays identified PFSB (Ki = 25.4 ± 2.3 nM) and its less lipophilic analogue MFSB, which exhibited enhanced affinity to αSYN (Ki = 10.3 ± 4.7 nM) and preserved selectivity over Aß. The two lead compounds were labeled with fluorine-18 and evaluated using in vitro autoradiography on human brain slices, where they demonstrated up to 4-fold increased specific binding in MSA cases compared to the corresponding control, reasonably reflecting selective binding to αSYN pathology. In vivo PET imaging showed [18F]MFSB successfully crosses the blood-brain barrier (BBB) and is taken up in the brain (SUV = 1.79 ± 0.02). Although its pharmacokinetic profile raises the need for additional structural optimization, [18F]MFSB represents a critical step forward in the development of a successful αSYN PET tracer by overcoming the major challenge of αSYN/Aß selectivity.

3.
ACS Omega ; 8(32): 29101-29112, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599915

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are surface-active redox enzymes that catalyze the degradation of recalcitrant polysaccharides, making them important tools for energy production from renewable sources. In addition, LPMOs are important virulence factors for fungi, bacteria, and viruses. However, many knowledge gaps still exist regarding their catalytic mechanism and interaction with their insoluble, crystalline substrates. Moreover, conventional structural biology techniques, such as X-ray crystallography, usually do not reveal the protonation state of catalytically important residues. In contrast, neutron crystallography is highly suited to obtain this information, albeit with significant sample volume requirements and challenges associated with hydrogen's large incoherent scattering signal. We set out to demonstrate the feasibility of neutron-based techniques for LPMOs using N-acetylglucosamine-binding protein A (GbpA) from Vibrio cholerae as a target. GbpA is a multifunctional protein that is secreted by the bacteria to colonize and degrade chitin. We developed an efficient deuteration protocol, which yields >10 mg of pure 97% deuterated protein per liter expression media, which was scaled up further at international facilities. The deuterated protein retains its catalytic activity and structure, as demonstrated by small-angle X-ray and neutron scattering studies of full-length GbpA and X-ray crystal structures of its LPMO domain (to 1.1 Å resolution), setting the stage for neutron scattering experiments with its substrate chitin.

4.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241742

RESUMO

A technique to image α-synuclein (αSYN) fibrils in vivo is an unmet scientific and clinical need that would represent a transformative tool in the understanding, diagnosis, and treatment of various neurodegenerative diseases. Several classes of compounds have shown promising results as potential PET tracers, but no candidate has yet exhibited the affinity and selectivity required to reach clinical application. We hypothesized that the application of the rational drug design technique of molecular hybridization to two promising lead scaffolds could enhance the binding to αSYN up to the fulfillment of those requirements. By combining the structures of SIL and MODAG tracers, we developed a library of diarylpyrazoles (DAPs). In vitro evaluation through competition assays against [3H]SIL26 and [3H]MODAG-001 showed the novel hybrid scaffold to have preferential binding affinity for amyloid ß (Aß) over αSYN fibrils. A ring-opening modification on the phenothiazine building block to produce analogs with increased three-dimensional flexibility did not result in an improved αSYN binding but a complete loss of competition, as well as a significant reduction in Aß affinity. The combination of the phenothiazine and the 3,5-diphenylpyrazole scaffolds into DAP hybrids did not generate an enhanced αSYN PET tracer lead compound. Instead, these efforts identified a scaffold for promising Aß ligands that may be relevant to the treatment and monitoring of Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Amiloide
5.
J Biol Chem ; 298(11): 102531, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162505

RESUMO

α-synucleinopathy is driven by an imbalance of synthesis and degradation of α-synuclein (αSyn), causing a build up of αSyn aggregates and post-translationally modified species, which not only interfere with normal cellular metabolism but also by their secretion propagates the disease. Therefore, a better understanding of αSyn degradation pathways is needed to address α-synucleinopathy. Here, we used the nerve growth factor-differentiated catecholaminergic PC12 neuronal cell line, which was conferred α-synucleinopathy by inducible expression of αSyn and tubulin polymerization-promoting protein p25α. p25α aggregates αSyn, and imposes a partial autophagosome-lysosome block to mimic aspects of lysosomal deficiency common in neurodegenerative disease. Under basal conditions, αSyn was degraded by multiple pathways but most prominently by macroautophagy and Nedd4/Ndfip1-mediated degradation. We found that expression of p25α induced strong p38MAPK activity. Remarkably, when opposed by inhibitor SB203580 or p38MAPK shRNA knockdown, endolysosomal localization and degradation of αSyn increased, and αSyn secretion and cytotoxicity decreased. This effect was specifically dependent on Hsc70 and the endosomal sorting complex required for transport machinery, but different from classical microautophagy, as the αSyn Hsc70 binding motif was unnecessary. Furthermore, in a primary neuronal (h)-αSyn seeding model, p38MAPK inhibition decreased pathological accumulation of phosphorylated serine-129-αSyn and cytotoxicity. In conclusion, p38MAPK inhibition shifts αSyn degradation from various forms of autophagy to an endosomal sorting complex required for transport-dependent uptake mechanism, resulting in increased αSyn turnover and cell viability in p25α-expressing cells. More generally, our results suggest that under conditions of autophagolysosomal malfunction, the uninterrupted endosomal pathway offers a possibility to achieve disease-associated protein degradation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas do Tecido Nervoso , alfa-Sinucleína , Proteínas Quinases p38 Ativadas por Mitógeno , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sinucleinopatias , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Animais , Ratos
6.
Glycobiology ; 31(11): 1500-1509, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34735569

RESUMO

Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in antineoplastic therapies and vaccine strategies. 14F7 is a monoclonal IgG1 with high clinical potential in cancer immunotherapy as it displays extraordinary specificity for NeuGc GM3, while it does not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å crystal structure of the 14F7 antigen-binding domain (14F7 scFv) in complex with the NeuGc GM3 trisaccharide. Modeling analysis and previous mutagenesis data suggest that 14F7 may also bind to an alternative NeuGc GM3 conformation, not observed in the crystal structure. The most intriguing finding, however, was that a water molecule centrally placed in the complementarity-determining region directly mediates the specificity of 14F7 to NeuGc GM3. This has profound impact on the complexity of engineering in the binding site and provides an excellent example of the importance in understanding the water structure in antibody-antigen interactions.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Gangliosídeo G(M3)/imunologia , Água/química , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Gangliosídeo G(M3)/síntese química , Gangliosídeo G(M3)/química , Modelos Moleculares , Estrutura Molecular
7.
Acta Neuropathol ; 142(1): 87-115, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33978813

RESUMO

Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.


Assuntos
Atrofia de Múltiplos Sistemas/genética , Doenças Neurodegenerativas/genética , Sinucleinopatias/patologia , alfa-Sinucleína/genética , Animais , Linhagem Celular , Humanos , Corpos de Inclusão/patologia , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/genética , Oligodendroglia/metabolismo , Conformação Proteica , Deficiências na Proteostase/genética , Substância Negra/patologia , alfa-Sinucleína/toxicidade
8.
Sci Rep ; 8(1): 13104, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166577

RESUMO

The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+ ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+ dependent amidohydrolases that disfavour Zn2+ as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution. The work illustrates a fundamental difference in the substrate-binding mode between Mn2+ dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+ dependent enzymes.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Manganês/metabolismo , Rhodobacteraceae/enzimologia , Zinco/metabolismo , Amidoidrolases/química , Sequência de Aminoácidos , Arilformamidase/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Sequência Conservada , Evolução Molecular , Glutamina/metabolismo , Hidrólise , Isatina/química , Isatina/metabolismo , Cinurenina/metabolismo , Modelos Moleculares , Prótons , Teoria Quântica
9.
Sci Rep ; 8(1): 10836, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022069

RESUMO

Targeted cancer immunotherapy offers increased efficacy concomitantly with reduced side effects. One antibody with promising clinical potential is 14F7, which specifically recognises the NeuGc GM3 ganglioside. This antigen is found in the plasma membrane of a range of tumours, but is essentially absent from healthy human cells. 14F7 can discriminate NeuGc GM3 from the very similar NeuAc GM3, a common component of cell membranes. The molecular basis for this unique specificity is poorly understood. Here we designed and expressed 14F7-derived single-chain Fvs (scFvs), which retained the specificity of the parent antibody. Detailed expression and purification protocols are described as well as the synthesis of the NeuGc GM3 trisaccharide. The most successful scFv construct, which comprises an alternative variable light chain (VLA), allowed structure determination to 2.2 Å resolution. The structure gives insights into the conformation of the important CDR H3 loop and the suspected antigen binding site. Furthermore, the presence of VLA instead of the original VL elucidates how this subdomain indirectly stabilises the CDR H3 loop. The current work may serve as a guideline for the efficient production of scFvs for structure determination.


Assuntos
Anticorpos Monoclonais/química , Gangliosídeo G(M3)/química , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Região Variável de Imunoglobulina/química , Neoplasias/tratamento farmacológico , Anticorpos de Cadeia Única/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Cristalografia por Raios X , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Conformação Proteica , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
10.
PLoS One ; 13(4): e0195868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649333

RESUMO

There is a quest for production of soluble protein of high quality for the study of T-cell receptors (TCRs), but expression often results in low yields of functional molecules. In this study, we used an E. coli chaperone-assisted periplasmic production system and compared expression of 4 different soluble TCR formats: single-chain TCR (scTCR), two different disulfide-linked TCR (dsTCR) formats, and chimeric Fab (cFab). A stabilized version of scTCR was also included. Additionally, we evaluated the influence of host (XL1-Blue or RosettaBlueTM) and the effect of IPTG induction on expression profiles. A celiac disease patient-derived TCR with specificity for gluten was used, and we achieved detectable expression for all formats and variants. We found that expression in RosettaBlueTM without IPTG induction resulted in the highest periplasmic yields. Moreover, after large-scale expression and protein purification, only the scTCR format was obtained in high yields. Importantly, stability engineering of the scTCR was a prerequisite for obtaining reliable biophysical characterization of the TCR-pMHC interaction. The scTCR format is readily compatible with high-throughput screening approaches that may enable both development of reagents allowing for defined peptide MHC (pMHC) characterization and discovery of potential novel therapeutic leads.


Assuntos
Escherichia coli/genética , Expressão Gênica , Modelos Moleculares , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Receptores de Antígenos de Linfócitos T/metabolismo , Solubilidade , Relação Estrutura-Atividade
11.
Structure ; 26(3): 369-371, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514076

RESUMO

Fungi and plants do not have an adaptive immune system. Innate immunity serves as their sole defense, often based on carbohydrate recognition by lectins. In a twist of nature, as revealed by Sommer et al. (2018) in this issue of Structure, a conserved fungal immunoprotein adopts the shape of a miniature virus.


Assuntos
Agaricales , Imunidade Inata , Lectinas , Polissacarídeos
12.
Sci Rep ; 7(1): 12131, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935959

RESUMO

The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn2+-binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.


Assuntos
Simportadores de Sódio-Bicarbonato/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Consenso , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Simportadores de Sódio-Bicarbonato/metabolismo , Zinco/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 8): 591-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27487922

RESUMO

A-kinase anchoring proteins (AKAPs) are a family of proteins that provide spatiotemporal resolution of protein kinase A (PKA) phosphorylation. In the myocardium, PKA and AKAP18γ/δ are found in complex with sarcoendoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and phospholamban (PLB). This macromolecular complex provides a means by which anchored PKA can dynamically regulate cytoplasmic Ca(2+) release and re-uptake. For this reason, AKAP18γ/δ presents an interesting drug target with therapeutic potential in cardiovascular disease. The crystal structure of the central domain of human AKAP18γ has been determined at the atomic resolution of 1.25 Å. This first structure of human AKAP18γ is trapped in a novel conformation by a malonate molecule bridging the important R-loop with the 2H phosphoesterase motif. Although the physiological substrate of AKAP18γ is currently unknown, a potential proton wire deep in the central binding crevice has been indentified, leading to bulk solvent below the R-loop. Malonate complexed with AKAP18γ at atomic resolution provides an excellent starting point for structure-guided drug design.


Assuntos
Proteínas de Ancoragem à Quinase A/química , Malonatos/química , Proteínas de Membrana/química , Plasmídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Malonatos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
14.
ACS Chem Neurosci ; 6(8): 1353-60, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25891478

RESUMO

Isatin is an endogenous inhibitor of monoamine oxidase B and is found in human blood and tissue. Increased levels of isatin have been linked to stress and anxiety in rodents and humans; however, the metabolism of isatin in humans is largely unknown. We have developed a fluorescence-based enzymatic assay that can quantify isatin in blood samples. A phase extraction of isatin followed by a second phase extraction combined with an enzymatic reaction performed by an isatin hydrolase is used to extract and quantify isatin in whole blood samples. This results in a purity of more than 95% estimated from RP-HPLC. The hydrophobic molecule isatin is in equilibrium between an organic and aqueous phase; however, conversion by isatin hydrolase to the hydrophilic product isatinate traps it in the aqueous phase, making this step highly specific for isatin. The described protocol also offers a novel method for fast and efficient removal of isatin from any type of sample. The isolated isatinate is converted chemically to anthranilate that allows fluorescent detection and quantification. Pig plasma isatin levels are quantified to a mean of 458 nM ± 91 nM. Biophysical characterization of the isatin hydrolase shows enzymatic functionality between pH 6 and 9 and at temperatures up to 50 °C. Isatin hydrolase is highly selective for manganese ions with a dissociation constant determined to be 9.5 µM. We deliver proof-of-concept for the enzymatic quantification of isatin in blood and provide a straightforward method for further investigation of isatin as a biomarker in human health.


Assuntos
Análise Química do Sangue/métodos , Ensaios Enzimáticos/métodos , Isatina/sangue , Animais , Biomarcadores/sangue , Biomarcadores/química , Calorimetria , Cromatografia Líquida de Alta Pressão , Escherichia coli , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Isatina/química , Masculino , Manganês/química , Suínos , Temperatura , Trítio , Água/química
15.
J Biol Chem ; 289(31): 21351-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24917679

RESUMO

The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora.


Assuntos
Aquaporinas/química , Hidrolases/química , Isatina/química , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Primers do DNA , Hidrolases/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Prótons , Rhodobacteraceae/enzimologia , Homologia de Sequência de Aminoácidos
16.
Front Physiol ; 4: 320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223558

RESUMO

The sodium dependent bicarbonate transporter NCBE/NBCn2 is predominantly expressed in the central nervous system (CNS). The highest protein concentrations are found in the choroid plexus. The primary function of this integral plasma membrane transport protein is to regulate intracellular neuronal pH and also probably to maintain the pH homeostasis across the blood-cerebrospinal fluid barrier. NCBE is predicted to contain at least 10 transmembrane helices. The N- and C- termini are both cytoplasmic, with a large N-terminal domain (Nt-NCBE) and a relatively small C-terminal domain (Ct-NCBE). The Nt-NCBE is likely to be involved in bicarbonate recognition and transport and contains key areas of regulation involving pH sensing and protein-protein interactions. Intrinsic disordered protein regions (IDPRs) are defined as protein regions having no rigid three-dimensional structure under physiological conditions. They are believed to be involved in signaling networks in which specific, low affinity, protein-protein interactions play an important role. We predict that NCBE and other SoLute Carrier 4 (SLC4) family members have a high level of intrinsic disorder in their cytoplasmic regions. To provide biophysical evidence for the IDPRs predicted in Nt-NCBE, we produced pure (>99%), recombinant Nt-NCBE using E. coli as the expression host. The protein was used to perform differential scanning fluorescence spectroscopy (DSF), in order to search for small molecules that would induce secondary or tertiary structure in the IDPRs. We expect this to assist the development of selective pharmaceutical compounds against individual SLC4 family members. We have also determined a low resolution (4 Å) X-ray crystal structure of the N-terminal core domain. The N-terminal cytoplasmic domain (cdb3) of anion exchanger 1 (AE1) shares a similar fold with the N-terminal core domain of NCBE. Crystallization conditions for the full-length N-terminal domain have been sought, but only the core domain yields diffracting crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...