Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(22): 5882-5888, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706938

RESUMO

Based on preflight laboratory testing, an unexpectedly large positional offset between the two midinfrared (mid-IR) detector arrays in the Cassini composite infrared spectrometer (CIRS) instrument has been noted in the literature. A much smaller offset was measured in-flight. We investigate this discrepancy by estimating several spatial relationships among the detectors and comparing these results with three independent data sets. This enables us to infer the probable cause of this offset and to derive a new reduced value. We comment on the effect that this change could have on previously published results involving CIRS data. We also present a graphical display of the arrays projected on the sky as CIRS would see it.

3.
Science ; 332(6036): 1413-7, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21596955

RESUMO

Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.

4.
Faraday Discuss ; 147: 65-81; discussion 83-102, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302543

RESUMO

In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.

5.
J Phys Chem A ; 113(42): 11101-6, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19552394

RESUMO

The (12)C/(13)C abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(-1) from high spectral resolution ground-based observations. The value, 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The (12)C/(13)C ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(1), representing an enrichment of (12)C in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same (12)C/(13)C ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...