Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Athl Train ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477136

RESUMO

CONTEXT: Slower habitual walking speed and aberrant gait biomechanics are linked to clinically significant knee-related symptoms and articular cartilage composition changes linked to posttraumatic osteoarthritis (PTOA) following anterior cruciate ligament reconstruction (ACLR). OBJECTIVE: To determine specific gait biomechanical variables that can accurately identify individuals with clinically significant knee-related symptoms post-ACLR, and the corresponding threshold values, sensitivity, specificity, and odds ratios for each biomechanical variable. DESIGN: Cross-sectional analysis. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Seventy-one individuals (n=38 female; age=21±4 years; height=1.76±0.11 m; mass=75.38±13.79 kg) who were 6 months post-primary unilateral ACLR (6.2±0.4 months). MAIN OUTCOME MEASURES: 3D motion capture of 5 overground walking trials was used to calculate discrete gait biomechanical variables of interest during stance phase (1st and 2nd peak vertical ground reaction force [vGRF]; midstance minimum vGRF; peak internal knee abduction and extension moments; and peak knee flexion angle), along with habitual walking speed. Knee Injury and Osteoarthritis Outcome Scores (KOOS) was used to dichotomize patients as symptomatic (n=51) or asymptomatic (n=20) using the Englund et al. 2003 KOOS guidelines for defining clinically significant knee-related symptoms. Separate receiver operating characteristic (ROC) curves and respective areas under the curve (AUC) were used to evaluate the capability of each biomechanical variable of interest for identifying individuals with clinically significant knee-related symptoms. RESULTS: Habitual walking speed (AUC=0.66), vGRF at midstance (AUC=0.69), and 2nd peak vGRF (AUC=0.76), demonstrated low-to-moderate accuracy for identifying individuals with clinically significant knee-related symptoms. Individuals who exhibited habitual walking speeds ≤1.27 m/s, midstance vGRF ≥0.82 BW, and 2nd peak vGRF ≤1.11 BW, demonstrated 3.13, 6.36, and 9.57 times higher odds of experiencing clinically significant knee-related symptoms, respectively. CONCLUSIONS: Critical thresholds for gait variables may be utilized to identify individuals with increased odds of clinically significant knee-related symptoms and potential targets for future interventions.

2.
J Athl Train ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291796

RESUMO

CONTEXT: Gait biomechanics and daily steps are important aspects of knee joint loading that change following anterior cruciate ligament reconstruction (ACLR). Understanding their relationship during the first 6 months post-ACLR could help develop comprehensive rehabilitation interventions that promote optimal joint loading following injury, thereby improving long-term knee joint health. OBJECTIVE: Our primary objective was to compare biomechanical gait waveforms throughout stance at early timepoints post-ACLR in individuals with different daily step behaviors at 6 months post-ACLR. The secondary aim was to examine how these gait waveforms compare to those of uninjured controls. DESIGN: Case-Control Study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Individuals with primary ACLR assigned to a low (LSG) (n=13) or high step group (HSG) (n=19) based on their average daily steps at 6 months post- ACLR, and uninjured matched controls (n=32). MAIN OUTCOME MEASURE(S): Gait biomechanics were collected at 2, 4, and 6 months post-ACLR in ACLR individuals and at a single session for controls. Knee adduction moment (KAM), knee extension moment (KEM), and knee flexion angle (KFA) waveforms were calculated during gait stance and then compared via functional waveform analyses. Mean differences and corresponding 95% confident intervals between groups were reported. RESULTS: Primary results demonstrated lesser KFA (1-45%, 79-92% of stance) and greater KEM (65-93% of stance) at 2 months and greater KAM (14-20%, 68-92% of stance) at 4 months post-ACLR for the HSG compared to the LSG. KEM, KAM, and KFA waveforms differed across various proportions of stance at all timepoints between step groups and controls. CONCLUSION: Differences in gait biomechanics are present at 2 and 4 months post-ACLR between step groups, with the LSG demonstrating an overall more flexed knee and more profound stepwise underloading throughout stance than the HSG. The results indicate a relation between early gait biomechanics and later daily steps behaviors following ACLR.

3.
Med Sci Sports Exerc ; 56(3): 464-475, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051127

RESUMO

PURPOSE: To determine the effect of acutely increasing walking speed on gait biomechanics in ACLR individuals compared with their habitual speed and uninjured matched-controls. METHODS: Gait biomechanics were collected on 30 ACLR individuals (20 females; age, 22.0 ± 4.2 yr; body mass index, 24.0 ± 3.0 kg·m -2 ) at their habitual speed and at 1.3 m·s -1 , a speed similar to controls, and 30 uninjured matched-controls (age: 21.9 ± 3.8, body mass index: 23.6 ± 2.5) at their habitual speed. Functional waveform analyses compared biomechanics between: i) walking at habitual speed vs 1.3 m·s -1 in ACLR individuals; and ii) ACLR individuals at 1.3 m·s -1 vs controls. RESULTS: In the ACLR group, there were no statistically significant biomechanical differences between walking at habitual speed (1.18 ± 0.12 m·s -1 ) and 1.3 m·s -1 (1.29 ± 0.05 m·s -1 ). Compared with controls (habitual speed: 1.34 ± 0.12 m·s -1 ), the ACLR group while walking at 1.3 m·s -1 exhibited smaller vertical ground reaction force (vGRF) during early and late stance (13-28, 78-90% stance phase), greater midstance vGRF (47-61%), smaller early-to-midstance knee flexion angle (KFA; 1-44%), greater mid-to-late stance KFA (68-73, 96-101%), greater internal knee abduction moment (69-101%), and smaller internal knee extension moment (4-51, 88-96%). CONCLUSIONS: Increasing walking speed to a speed similar to uninjured controls did not elicit significant changes to gait biomechanics, and ACLR individuals continued to demonstrate biomechanical profiles that are associated with PTOA development and differ from controls.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Velocidade de Caminhada , Fenômenos Biomecânicos , Marcha , Caminhada , Articulação do Joelho , Lesões do Ligamento Cruzado Anterior/cirurgia
4.
Arthritis Rheumatol ; 76(4): 566-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37961759

RESUMO

OBJECTIVE: The objective of this study was to compare the vertical (vGRF), anterior-posterior (apGRF), and medial-lateral (mlGRF) ground reaction force (GRF) profiles throughout the stance phase of gait (1) between individuals 6 to 12 months post-anterior cruciate ligament reconstruction (ACLR) and uninjured matched controls and (2) between ACLR and individuals with differing radiographic severities of knee osteoarthritis (KOA), defined as Kellgren and Lawrence (KL) grades KL2, KL3, and KL4. METHODS: A total of 196 participants were included in this retrospective cross-sectional analysis. Gait biomechanics were collected from individuals 6 to 12 months post-ACLR (n = 36), uninjured controls matched to the ACLR group (n = 36), and individuals with KL2 (n = 31), KL3 (n = 67), and KL4 osteoarthritis (OA) (n = 26). Between-group differences in vGRF, apGRF, and mlGRF were assessed in reference to the ACLR group throughout each percentage of stance phase using a functional linear model. RESULTS: The ACLR group demonstrated lower vGRF and apGRF in early and late stance compared to the uninjured controls, with large effects (Cohen's d range: 1.35-1.66). Conversely, the ACLR group exhibited greater vGRF (87%-90%; 4.88% body weight [BW]; d = 0.75) and apGRF (84%-94%; 2.41% BW; d = 0.79) than the KL2 group in a small portion of late stance. No differences in mlGRF profiles were observed between the ACLR and either the uninjured controls or the KL2 group. The magnitude of difference in GRF profiles between the ACLR and OA groups increased with OA disease severity. CONCLUSION: Individuals 6 to 12 months post-ACLR exhibit strikingly similar GRF profiles as individuals with KL2 KOA, suggesting both patient groups may benefit from targeted interventions to address aberrant GRF profiles.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Humanos , Estudos Retrospectivos , Estudos Transversais , Marcha , Fenômenos Biomecânicos , Articulação do Joelho
5.
Clin Biomech (Bristol, Avon) ; 105: 105979, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148613

RESUMO

BACKGROUND: Ultrasonography is capable of detecting morphological changes in femoral articular cartilage cross-sectional area in response to an acute bout of walking; yet, the response of femoral cartilage cross-sectional area varies between individuals. It is hypothesized that differences in joint kinetics may influence the response of cartilage to a standardized walking protocol. Therefore, the study purpose was to compare internal knee abduction and extension moments between individuals with anterior cruciate ligament reconstruction who demonstrate an acute increase, decrease, or unchanged medial femoral cross-sectional area response following 3000 steps. METHODS: The medial femoral cartilage in the anterior cruciate ligament reconstructed limb was assessed with ultrasonography before and immediately following 3000 steps of treadmill walking. Knee joint moments were calculated in the anterior cruciate ligament reconstructed limb and compared between groups throughout the stance phase of gait using linear regression and functional, mixed effects waveform analyses. FINDINGS: No associations between peak knee joint moments and the cross-sectional area response were observed. The group that demonstrated an acute cross-sectional area increase exhibited 1) lower knee abduction moments in early stance in comparison to the group that exhibited a decreased cross-sectional area response; and 2) greater knee extension moments in early stance in comparison to the group with an unchanged cross-sectional area response. INTERPRETATION: The propensity of femoral cartilage to acutely increase cross-sectional area in response to walking is consistent with less-dynamic knee abduction and knee extension moment profiles.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite do Joelho , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho , Marcha/fisiologia , Extremidade Inferior , Reconstrução do Ligamento Cruzado Anterior/métodos , Fenômenos Biomecânicos
6.
Clin Rheumatol ; 42(7): 1863-1874, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929315

RESUMO

INTRODUCTION/OBJECTIVE: To determine changes in gait biomechanics, quadricep strength, physical function, and daily steps after an extended-release corticosteroid knee injection at 4 and 8 weeks post-injection in individuals with knee osteoarthritis as well as between responders and non-responders based on changes in self-reported knee function. METHOD: The single-arm, clinical trial included three study visits (baseline, 4 weeks, and 8 weeks post-injection), where participants received an extended-release corticosteroid injection following the baseline visit. Time-normalized vertical ground reaction force (vGRF), knee flexion angle (KFA), knee abduction moment (KAM), and knee extension moment (KEM) waveforms throughout stance were collected during gait biomechanical assessments. Participants also completed quadricep strength, physical function (chair-stand, stair-climb, 20-m fast-paced walk) testing, and free-living daily step assessment for 7 days following each visit. RESULTS: All participants demonstrated increased KFA excursion (i.e., greater knee extension angle at heel strike and KFA at toe-off), increased KEM during early stance, improved physical function (all p < 0.001), and increased quadricep strength at 4 and 8 weeks. KAM increased throughout most of stance at 4 and 8 weeks post-injection (p < 0.001) but appears to be driven by gait changes in non-responders. Non-responders demonstrated lesser vGRF during late stance and lesser KEM and KFA throughout stance compared to responders at baseline. CONCLUSIONS: Extended-release corticosteroid injections demonstrated short-term improvements in gait biomechanics, quadricep strength, and physical function for up to 4 weeks. However, non-responders demonstrated gait biomechanics associated with osteoarthritis progression prior to the corticosteroid injection, suggesting that non-responders demonstrate more deleterious gait biomechanics prior to corticosteroid injection. Key Points • Individuals with knee osteoarthritis who were treated with extended-release corticosteroid injections demonstrated improvements in gait biomechanics and physical function for 8 weeks. • Individuals with knee osteoarthritis, who walked with aberrant walking biomechanics before treatment, failed to respond to extended-release corticosteroid treatment. • Future research should determine the mechanisms contributing to the short-term changes in gait biomechanics and physical function such as reduced inflammation.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Fenômenos Biomecânicos , Marcha , Caminhada , Articulação do Joelho
7.
J Athl Train ; 58(5): 430-436, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788341

RESUMO

CONTEXT: Patient-reported outcomes (PROs) are used to track recovery and inform clinical decision-making after anterior cruciate ligament reconstruction (ACLR). Whether sex influences the trajectory of improvements in PROs over time post-ACLR remains unclear. OBJECTIVES: To (1) examine the effect of sex on the association between months post-ACLR and Knee injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QOL) scores in individuals with ACLR and (2) assess sex differences in the KOOS QOL score at selected timepoints post-ACLR. DESIGN: Cross-sectional study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 133 females (20± 3 years) and 85 males (22 ± 4 years) within 6 to 60 months of primary, unilateral ACLR. MAIN OUTCOME MEASURE(S): The KOOS QOL was completed at a single follow-up timepoint post-ACLR. A multivariate linear regression model was calculated to assess the interaction of sex on the association between months post-ACLR and KOOS QOL score. Sex-specific linear regression models were then used to predict KOOS QOL estimated marginal means at each clinical timepoint (6, 12, 24, 36, 48, and 60 months post-ACLR) and compare the sexes. RESULTS: In the primary model (R2 = 0.16, P < .0001), a significant interaction existed between sex and time post-ACLR (ß = -0.46, P < .01). Greater months post-ACLR were associated with better KOOS QOL scores for males (R2 = 0.29, ß = 0.69, P < .001); months post-ACLR was a weaker predictor of KOOS QOL scores for females (R2 = 0.04, ß = 0.23, P < .02). Estimated marginal means for KOOS QOL scores were greater for males than females at 36 months (t210 = 2.76, P < .01), 48 months (t210 = 3.02, P < .01), and 60 months (t210 = 3.09, P = .02) post-ACLR. CONCLUSIONS: Males exhibited PRO improvement post-ACLR as the months post-ACLR increased, whereas females did not demonstrate the same magnitude of linear increase in KOOS QOL score. Females may require extended intervention to improve clinical outcomes post-ACLR and address a plateau in QOL score.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Masculino , Feminino , Qualidade de Vida , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos Transversais , Medidas de Resultados Relatados pelo Paciente , Articulação do Joelho/cirurgia
8.
Hum Factors ; 65(3): 482-494, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34011186

RESUMO

OBJECTIVE: To determine how ultrawide (UW) and dual displays configurations can influence neck biomechanics and performance compared to a single display. BACKGROUND: Studies have assessed neck kinematics and performance when using dual displays, but these studies have used screen sizes smaller than today's display size, have inconsistent participant placement, and few have assessed these two variables together. METHODS: Seventeen participants completed five tasks on six display configurations. Neck kinematics and performance were tracked for each configuration. RESULTS: Centered configurations produced significantly different median neck rotation angles compared to secondary configurations (p < .001) for three of the tasks. A 34" curved UW display with a longer viewing distance produced similar neck kinematics to a single 24" display with the potential to also reduce screen interactions. When compared to single, the benefit of secondary versus centered monitors was dependent on the type of task being performed. Users may prefer the UW, centered dual, and secondary dual configurations over the single display. CONCLUSION: The benefit of secondary versus centered displays is dependent on the type of task being performed. Dual displays are still beneficial but should be used with a monitor arm to switch between centered and secondary configurations as necessary. Future work should look at larger UW displays to see if these results hold compared to dual display configurations. APPLICATION: The results can be used to make evidence-based guidelines for displays based on size and task. Researchers can use this information to design future studies looking at specific configurations.


Assuntos
Computadores , Pescoço , Humanos , Fenômenos Biomecânicos , Apresentação de Dados , Interface Usuário-Computador
9.
Cartilage ; 13(1): 19476035211072220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098719

RESUMO

OBJECTIVE: A complex association exists between aberrant gait biomechanics and posttraumatic knee osteoarthritis (PTOA) development. Previous research has primarily focused on the link between peak loading during the loading phase of stance and joint tissue changes following anterior cruciate ligament reconstruction (ACLR). However, the associations between loading and cartilage composition at other portions of stance, including midstance and late stance, is unclear. The objective of this study was to explore associations between vertical ground reaction force (vGRF) at each 1% increment of stance phase and tibiofemoral articular cartilage magnetic resonance imaging (MRI) T1ρ relaxation times following ACLR. DESIGN: Twenty-three individuals (47.82% female, 22.1 ±4.1 years old) with unilateral ACLR participated in a gait assessment and T1ρ MRI collection at 12.25 ± 0.61 months post-ACLR. T1ρ relaxation times were calculated for the articular cartilage of the weightbearing medial and lateral femoral (MFC, LFC) and tibial (MTC, LTC) condyles. Separate bivariate, Pearson product moment correlation coefficients (r) were used to estimate strength of associations between T1ρ MRI relaxation times in the medial and lateral tibiofemoral articular cartilage with vGRF across the entire stance phase. RESULTS: Greater vGRF during midstance (46%-56% of stance phase) was associated with greater T1ρ MRI relaxation times in the MFC (r ranging between 0.43 and 0.46). CONCLUSIONS: Biomechanical gait profiles that include greater vGRF during midstance are associated with MRI estimates of lesser proteoglycan density in the MFC. Inability to unload the ACLR limb during midstance may be linked to joint tissue changes associated with PTOA development.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Adolescente , Adulto , Reconstrução do Ligamento Cruzado Anterior/métodos , Cartilagem Articular/patologia , Feminino , Marcha , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
10.
J Athl Train ; 57(9-10): 921-928, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638344

RESUMO

CONTEXT: Adolescents and adults are treated similarly in rehabilitation and research despite differences in clinical recovery after anterior cruciate ligament reconstruction (ACLR). Aberrant gait is a clinical outcome associated with poor long-term health post-ACLR but has not been compared between adolescents and adults. OBJECTIVE: To compare gait biomechanical waveforms throughout stance between adolescents (<18 years old) and young adults (≥18 years old) post-ACLR. DESIGN: Case-control study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Adolescents (n = 13, girls = 77%, age = 16.7 ± 0.6 years, height = 1.7 ± 0.1 m, weight = 22.2 ± 3.7 kg/m2) were identified from a cross-sectional cohort assessing clinical outcomes 6 to 12 months post-ACLR. Young adults (n = 13, women = 77%, age = 22.3 ± 4.0 years, height = 1.7 ± 0.1 m, weight = 22.9 ± 3.3 kg/m2) were matched based on sex, time since surgery (±2 months), and body mass index (±3 kg/m2). INTERVENTION(S): Participants performed 5 gait trials at their habitual speed. MAIN OUTCOME MEASURE(S): Three-dimensional gait biomechanics and forces were collected. Vertical ground reaction force normalized to body weight (xBW), knee-flexion angle (°), knee-abduction moment (xBW × height), and knee-extension moment (BW × height) waveforms were calculated during the stance phase of gait (0%-100%). Habitual walking speed was compared using independent t tests. We used functional waveforms to compare gait biomechanics throughout stance with and without controlling for habitual walking speed by calculating mean differences between groups with 95% CIs. RESULTS: Adolescents walked with slower habitual speeds compared with adults (adolescents = 1.1 ± 0.1 m/s, adults = 1.3 ± 0.1 m/s, P < .001). When gait speed was not controlled, adolescents walked with less vertical ground reaction force (9%-15% of stance) and knee-abduction moment (12%-25% of stance) during early stance and less knee-extension moment during late stance (80%-99% of stance). Regardless of their habitual walking speed, adolescents walked with greater knee-flexion angle throughout most stances (0%-21% and 29%-100% of stance). CONCLUSIONS: Adolescents and adults demonstrated different gait patterns post-ACLR, suggesting that age may play a role in altered gait biomechanics.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Feminino , Adulto Jovem , Adolescente , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Estudos Transversais , Lesões do Ligamento Cruzado Anterior/cirurgia , Marcha , Articulação do Joelho/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...