Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(32): 8531-8551, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592998

RESUMO

The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.

2.
Phys Chem Chem Phys ; 25(31): 21020-21036, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522223

RESUMO

Hydrides are present in the reduced states of the iron-molybdenum cofactor (FeMoco) of Mo nitrogenase and are believed to play a key mechanistic role in the dinitrogen reduction reaction catalyzed by the enzyme. Two hydrides are present in the E4 state according to 1H ENDOR and there is likely a single hydride in the E2 redox state. The 2-hydride E4 state has been experimentally observed to bind N2 and it has been speculated that E3 may bind N2 as well. However, the E3 state has not been directly observed and very little is known about its molecular and electronic structure or reactivity. In recent computational studies, we have explored the energy surfaces of the E2 and E4 by QM/MM modelling, and found that the most stable hydride isomers contain bridging or partially bridging hydrides with an open protonated belt sulfide-bridge. In this work we systematically explore the energy surface of the E3 redox state, comparing single hydride and two-hydride isomers with varying coordination and bridging vs. terminal sulfhydryl groups. We also include a model featuring a triply protonated carbide. The results are only mildly dependent on the QM-region size. The three most stable E3 isomers at the r2SCAN level of theory have in common: an open belt sulfide-bridge (terminal sulfhydryl group on Fe6) and either 2 bridging hydrides (between Fe2 and Fe6), 1 bridging-1-terminal hydride (around Fe2 and Fe6) or a dihydrogen ligand bound at the Fe2 site. Analyzing the functional dependency of the results, we find that functionals previously found to predict accurate structures of spin-coupled Fe/Mo dimers and FeMoco (TPSSh, B97-D3, r2SCAN, and B3LYP*) are in generally good agreement about the stability of these 3 E3 isomers. However, B3LYP*, similar to its parent B3LYP method, predicts a triply protonated carbide isomer as the most stable isomer, an unlikely scenario in view of the lack of experimental evidence for carbide protonation occurring in reduced FeMoco states. Distinguishing further between the 3 hydride isomers is difficult and this flexible coordination nature of hydrides suggests that multiple hydride isomers could be present during experimental conditions. N2 binding was explored and resulted in geometries with 2 bridging hydrides and N2 bound to either Fe2 or Fe6 with a local low-spin state on the Fe. N2 binding is predicted to be mildly endothermic, similar to the E2 state, and it seems unlikely that the E3 state is capable of binding N2.

3.
J Am Chem Soc ; 145(25): 13640-13649, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307141

RESUMO

Orange protein (Orp) is a small bacterial metalloprotein of unknown function that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoS2CuS2MoS2]3-. In this paper, the performance of Orp as a catalyst for the photocatalytic reduction of protons into H2 has been investigated under visible light irradiation. We report the complete biochemical and spectroscopic characterization of holo-Orp containing the [S2MoS2CuS2MoS2]3- cluster, with docking and molecular dynamics simulations suggesting a positively charged Arg, Lys-containing pocket as the binding site. Holo-Orp exhibits excellent photocatalytic activity, in the presence of ascorbate as the sacrificial electron donor and [Ru(bpy)3]Cl2 as the photosensitizer, for hydrogen evolution with a maximum turnover number of 890 after 4 h irradiation. Density functional theory (DFT) calculations were used to propose a consistent reaction mechanism in which the terminal sulfur atoms are playing a key role in promoting H2 formation. A series of dinuclear [S2MS2M'S2MS2](4n)- clusters, with M = MoVI, WVI and M'(n+) = CuI, FeI, NiI, CoI, ZnII, CdII were assembled in Orp, leading to different M/M'-Orp versions which are shown to display catalytic activity, with the Mo/Fe-Orp catalyst giving a remarkable turnover number (TON) of 1150 after 2.5 h reaction and an initial turnover frequency (TOF°) of 800 h-1 establishing a record among previously reported artificial hydrogenases.

4.
Faraday Discuss ; 243(0): 253-269, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37067436

RESUMO

The biological conversion of N2 to NH3 is accomplished by the nitrogenase family, which is collectively comprised of three closely related but unique metalloenzymes. In the present study, we have employed a combination of the synchrotron-based technique of 57Fe nuclear resonance vibrational spectroscopy together with DFT-based quantum mechanics/molecular mechanics (QM/MM) calculations to probe the electronic structure and dynamics of the catalytic components of each of the three unique M N2ase enzymes (M = Mo, V, Fe) in both the presence (holo-) and absence (apo-) of the catalytic FeMco clusters (FeMoco, FeVco and FeFeco). The results described herein provide vibrational mode assignments for important fingerprint regions of the FeMco clusters, and demonstrate the sensitivity of the calculated partial vibrational density of states (PVDOS) to the geometric and electronic structures of these clusters. Furthermore, we discuss the challenges that are faced when employing NRVS to investigate large, multi-component metalloenzymatic systems, and outline the scope and limitations of current state-of-the-art theory in reproducing complex spectra.


Assuntos
Nitrogenase , Nitrogenase/química , Domínio Catalítico , Análise Espectral
5.
Chem Sci ; 14(11): 2826-2838, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937599

RESUMO

[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.

6.
Inorg Chem ; 62(14): 5357-5375, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36988551

RESUMO

The FeMo cofactor (FeMoco) of Mo nitrogenase is responsible for reducing dinitrogen to ammonia, but it requires the addition of 3-4 e-/H+ pairs before N2 even binds. A binding site at the Fe2/Fe3/Fe6/Fe7 face of the cofactor has long been suggested based on mutation studies, with Fe2 or Fe6 nowadays being primarily discussed as possibilities. However, the nature of N2 binding to the cofactor is enigmatic as the metal ions are coordinatively saturated in the resting state with no obvious binding site. Furthermore, the cofactor consists of high-spin Fe(II)/Fe(III) ions (antiferromagnetically coupled but also mixed-valence delocalized), which are not known to bind N2. This suggests that an Fe binding site with a different molecular and electronic structure than the resting state must be responsible for the experimentally known N2 binding in the E4 state of FeMoco. We have systematically studied N2 binding to Fe2 and Fe6 sites of FeMoco at the broken-symmetry QM/MM level as a function of the redox-, spin-, and protonation state of the cofactor. The local and global electronic structure changes to the cofactor taking place during redox events, protonation, Fe-S cleavage, hydride formation, and N2 coordination are systematically analyzed. Localized orbital and quasi-restricted orbital analysis via diamagnetic substitution is used to get insights into the local single Fe ion electronic structure in various states of FeMoco. A few factors emerge as essential to N2 binding in the calculations: spin-pairing of dxz and dyz orbitals of the N2-binding Fe ion, a coordination change at the N2-binding Fe ion aided by a hemilabile protonated sulfur, and finally hydride ligation. The results show that N2 binding to E0, E1, and E2 models is generally unfavorable, likely due to the high-energy cost of stabilizing the necessary spin-paired electronic structure of the N2-binding Fe ion in a ligand environment that clearly favors high-spin states. The results for models of E4, however, suggest a feasible model for why N2 binding occurs experimentally in the E4 state. E4 models with two bridging hydrides between Fe2 and Fe6 show much more favorable N2 binding than other models. When two hydrides coordinate to the same Fe ion, an increased ligand-field splitting due to octahedral coordination at either Fe2 or Fe6 is found. This altered ligand field makes it easier for the Fe ion to acquire a spin-paired electronic structure with doubly occupied dxz and dyz orbitals that backbond to a terminal N2 ligand. Within this model for N2 binding, both Fe2 and Fe6 emerge as possible binding site scenarios. Due to steric effects involving the His195 residue, affecting both the N2 ligand and the terminal SH- group, distinguishing between Fe2 and Fe6 is difficult; furthermore, the binding depends on the protonation state of His195.

7.
Phys Chem Chem Phys ; 25(6): 4570-4587, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723003

RESUMO

Open-shell transition metal chemistry presents challenges to contemporary electronic structure methods, based on either density functional or wavefunction theory. While CCSD(T) is the well-trusted gold standard for maingroup thermochemistry, the accuracy and robustness of the method is less clear for open-shell transition metal chemistry, requiring benchmarking of CCSD(T)-based protocols against either higher-level theory or experiment. Ionization energies (IEs) of metallocenes provide an interesting test case with metallocenes being common redox reagents as well as playing roles as redox mediators and cocatalysts in redox catalysis. Using highly accurate ZEKE-MATI experimental measurements of gas phase adiabatic (5.3275 ± 0.0006 eV) and vertical (5.4424 ± 0.0006 eV) ionization energies of cobaltocene, we systematically assessed the accuracy of the local coupled-cluster method DLPNO-CCSD(T) with respect to geometry, reference determinant, basis set size and extrapolation schemes, PNO cut-off and extrapolation, local triples approximation, relativistic effects and core-valence correlation. We show that PNO errors are controllable via the recently introduced PNO extrapolation schemes and that the expensive iterative triples (T1) contribution can be made more manageable by calculating it as a smaller-basis/smaller PNO-cutoff correction. The reference determinant turns out to be a critical aspect in these calculations with the HF determinant resulting in large DLPNO-CCSD(T) errors, likely due to the qualitatively flawed molecular orbital spectrum. The BP86 functional on the other hand was found to provide reference orbitals giving small DLPNO-CCSD(T) errors, likely due to more realistic orbitals as suggested by the more consistent MO spectrum compared to HF. A protocol including complete basis set extrapolations with correlation-consistent basis sets, complete PNO space extrapolations, iterative triples- and core-valence correlation corrections was found to give errors of -0.07 eV and -0.03 eV for adiabatic- and vertical-IE of cobaltocene, respectively, giving close to chemical accuracy for both properties. A computationally efficient DLPNO-CCSD(T) protocol was devised and tested against adiabatic ionization energies of 6 different metallocenes (V, Cr, Mn, Fe, Co, Ni). For the other metallocenes, the iterative triples (T1) and PNO extrapolation contributions turn out to be even more important. The results give errors close to the experimental uncertainty, similar to recent auxiliary-field quantum Monte Carlo results. The quality of the reference determinant orbitals is identified as the main source of uncertainty in CCSD(T) calculations of metallocenes.

8.
J Chem Theory Comput ; 18(3): 1437-1457, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35167749

RESUMO

The open-shell electronic structure of iron-sulfur clusters presents considerable challenges to quantum chemistry, with the complex iron-molybdenum cofactor (FeMoco) of nitrogenase representing perhaps the ultimate challenge for either wavefunction or density functional theory. While broken-symmetry density functional theory has seen some success in describing the electronic structure of such cofactors, there is a large exchange-correlation functional dependence in calculations that is not fully understood. In this work, we present a geometric benchmarking test set, FeMoD11, of synthetic spin-coupled Fe-Fe and Mo-Fe dimers, with relevance to the molecular and electronic structure of the Mo-nitrogenase FeMo cofactor. The reference data consists of high-resolution crystal structures of metal dimer compounds in different oxidation states. Multiple density functionals are tested on their ability to reproduce the local geometry, specifically the Fe-Fe/Mo-Fe distance, for both antiferromagnetically coupled and ferromagnetically coupled dimers via the broken-symmetry approach. The metal-metal distance is revealed not only to be highly sensitive to the amount of exact exchange in the functional but also to the specific exchange and correlation functionals. For the antiferromagnetically coupled dimers, the calculated metal-metal distance correlates well with the covalency of the bridging metal-ligand bonds, as revealed via the corresponding orbital analysis, Hirshfeld S/Fe charges, and Fe-S Mayer bond order. Superexchange via bridging ligands is expected to be the dominant interaction in these dimers, and our results suggest that functionals that predict accurate Fe-Fe and Mo-Fe distances describe the overall metal-ligand covalency more accurately and in turn the superexchange of these systems. The best performing density functionals of the 16 tested for the FeMoD11 test set are revealed to be either the nonhybrid functionals r2SCAN and B97-D3 or hybrid functionals with 10-15% exact exchange: TPSSh and B3LYP*. These same four functionals are furthermore found to reproduce the high-resolution X-ray structure of FeMoco well according to quantum mechanics/molecular mechanics (QM/MM) calculations. Almost all nonhybrid functionals systematically underestimate Fe-Fe and Mo-Fe distances (with r2SCAN and B97-D3 being the sole exceptions), while hybrid functionals with >15% exact exchange (including range-separated hybrid functionals) overestimate them. The results overall suggest r2SCAN, B97-D3, TPSSh, and B3LYP* as accurate density functionals for describing the electronic structure of iron-sulfur clusters in general, including the complex FeMoco cluster of nitrogenase.

9.
Inorg Chem ; 60(23): 18031-18047, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767349

RESUMO

Carbon monoxide (CO) is a well-known inhibitor of nitrogenase activity. Under turnover conditions, CO binds to FeMoco, the active site of Mo nitrogenase. Time-resolved IR measurements suggest an initial terminal CO at 1904 cm-1 that converts to a bridging CO at 1715 cm-1, and an X-ray structure shows that CO can displace one of the bridging belt sulfides of FeMoco. However, the CO-binding redox state(s) of FeMoco (En) and the role of the protein environment in stabilizing specific CO-bound intermediates remain elusive. In this work, we carry out an in-depth analysis of the CO-FeMoco interaction based on quantum chemical calculations addressing different aspects of the electronic structure. (1) The local electronic structure of the Fe-CO bond is studied through diamagnetically substituted FeMoco. (2) A cluster model of FeMoco within a polarizable continuum illustrates how CO binding may affect the spin-coupling between the metal centers. (3) A QM/MM model incorporates the explicit influence of the amino acid residues surrounding FeMoco in the MoFe protein. The QM/MM model predicts both a terminal and a bridging CO in the E1 redox state. The scaled calculated CO frequencies (1922 and 1716 cm-1, respectively) are in good agreement with the experimentally observed IR bands supporting CO binding to the E1 state. Alternatively, an E2 state QM/MM model, which has the same atomic structure as the CO-bound X-ray structure, features a semi-bridging CO with a scaled calculated frequency (1718 cm-1) similar to the bridging CO in the E1 model.


Assuntos
Monóxido de Carbono/metabolismo , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Teoria Quântica , Sítios de Ligação , Monóxido de Carbono/química , Cristalografia por Raios X , Modelos Moleculares , Molibdoferredoxina/química , Nitrogenase/química
10.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500604

RESUMO

The aqueous synthesis of Pd(II) complexes with alkylated tripeptides led to the hydrolysis of the peptides at low pH values and mixtures of complexed peptides were formed. A non-aqueous synthetic route allowed the formation and isolation of single products and their characterization. Pd(II) complexes with α-Asp(OR)AlaGly(OR), ß-Asp(OR)AlaGly(OR), and TrpAlaGly(OR) (R = H or alkyl) as tri and tetradentate chelates were characterized. The tridentate coordination mode was accompanied by a fourth monodentate ligand that was shown to participate in both ligand exchange reactions and a direct removal to form the tetradentate coordination mode. The tetradentate coordination revealed a rare a hemi labile carbonyl goup coordination mode to Pd(II). Reactivity with small molecules such as ethylene, acids, formate, and episulfide was investigated. Under acidic conditions and in the presence of ethylene; acetaldehyde was formed. The Pd(II) is a soft Lewis acid and thiophilic and the complexes abstract sulfur from episulfide at apparent modest catalytic rates. The complexes adopt a square planar geometry according to a spectroscopic analysis and DFT calculations that were employed to evaluate the most energetically favorable coordination geometry and compared with the observed infrared and NMR data.


Assuntos
Paládio/química , Peptídeos/química , Quelantes/química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Ligantes , Espectroscopia de Ressonância Magnética/métodos
11.
Chemistry ; 27(67): 16788-16800, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541722

RESUMO

The iron-molybdenum cofactor (FeMoco) is responsible for dinitrogen reduction in Mo nitrogenase. Unlike the resting state, E0 , reduced states of FeMoco are much less well characterized. The E2 state has been proposed to contain a hydride but direct spectroscopic evidence is still lacking. The E2 state can, however, relax back the E0 state via a H2 side-reaction, implying a hydride intermediate prior to H2 formation. This E2 →E0 pathway is one of the primary mechanisms for H2 formation under low-electron flux conditions. In this study we present an exploration of the energy surface of the E2 state. Utilizing both cluster-continuum and QM/MM calculations, we explore various classes of E2 models: including terminal hydrides, bridging hydrides with a closed or open sulfide-bridge, as well as models without. Importantly, we find the hemilability of a protonated belt-sulfide to strongly influence the stability of hydrides. Surprisingly, non-hydride models are found to be almost equally favorable as hydride models. While the cluster-continuum calculations suggest multiple possibilities, QM/MM suggests only two models as contenders for the E2 state. These models feature either i) a bridging hydride between Fe2 and Fe6 and an open sulfide-bridge with terminal SH on Fe6 (E2 -hyd) or ii) a double belt-sulfide protonated, reduced cofactor without a hydride (E2 -nonhyd). We suggest both models as contenders for the E2 redox state and further calculate a mechanism for H2 evolution. The changes in electronic structure of FeMoco during the proposed redox-state cycle, E0 →E1 →E2 →E0 , are discussed.


Assuntos
Molibdoferredoxina , Nitrogenase , Elétrons , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredução
12.
J Chem Theory Comput ; 17(8): 4929-4945, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34275279

RESUMO

The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.

13.
J Phys Chem Lett ; 12(4): 1250-1255, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497225

RESUMO

Recent Rydberg spectroscopy measurements of a diamine molecule, N,N'-dimethylpiperazine (DMP), indicate the existence of a localized electronic state as well as a delocalized electronic state. This implies that the cation, DMP+, can similarly have its positive charge either localized on one of the N atoms or delocalized over both. This interpretation of the experiments has, however, been questioned based on coupled cluster calculations. In this article, results of high-level multireference configuration interaction calculations are presented where a localized state of DMP+ is indeed found to be present with an energy barrier separating it from the delocalized state. The energy difference between the two states is in excellent agreement with the experimental estimate. The results presented here, therefore, support the original interpretation of the experiments and illustrate a rare shortcoming of CCSD(T), the "gold standard" of quantum chemistry. These results have implications for the development of density functionals, as most functionals fail to produce the localized state.

14.
Gels ; 6(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233596

RESUMO

The role of specific interactions in the self-assembly process of low molecular weight gelators (LMWGs) was studied by altering the nonbonding interactions responsible for gel formation via structural modification of the gelator/nongelator. This was achieved by modifying pyridyl moieties of bis(pyridyl) urea-based hydrogelator (4-BPU) and the isomer (3-BPU) to pyridyl N-oxide compounds (L1 and L2, respectively). The modification of the functional groups resulted in the tuning of the gelation properties of the parent gelator, which induced/enhanced the gelation properties. The modified compounds displayed better mechanical and thermal stabilities and the introduction of the N-oxide moieties had a prominent effect on the morphologies of the gel network, which was evident from the scanning electron microscopy (SEM) images. The effect of various interactions due to the introduction of N-oxide moieties in the gel network formation was analyzed by comparing the solid-state interactions of the compounds using single crystal X-ray diffraction and computational studies, which were correlated with the enhanced gelation properties. This study shows the importance of specific nonbonding interactions and the spatial arrangement of the functional groups in the supramolecular gel network formation.

15.
Inorg Chem ; 59(16): 11514-11527, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799489

RESUMO

The nitrogenase enzymes are responsible for all biological nitrogen reduction. How this is accomplished at the atomic level, however, has still not been established. The molybdenum-dependent nitrogenase has been extensively studied and is the most active catalyst for dinitrogen reduction of the nitrogenase enzymes. The vanadium-dependent form, on the other hand, displays different reactivity, being capable of CO and CO2 reduction to hydrocarbons. Only recently did a crystal structure of the VFe protein of vanadium nitrogenase become available, paving the way for detailed theoretical studies of the iron-vanadium cofactor (FeVco) within the protein matrix. The crystal structure revealed a bridging 4-atom ligand between two Fe atoms, proposed to be either a CO32- or NO3- ligand. Using a quantum mechanics/molecular mechanics model of the VFe protein, starting from the 1.35 Å crystal structure, we have systematically explored multiple computational models for FeVco, considering either a CO32- or NO3- ligand, three different redox states, and multiple broken-symmetry states. We find that only a [VFe7S8C(CO3)]2- model for FeVco reproduces the crystal structure of FeVco well, as seen in a comparison of the Fe-Fe and V-Fe distances in the computed models. Furthermore, a broken-symmetry solution with Fe2, Fe3, and Fe5 spin-down (BS7-235) is energetically preferred. The electronic structure of the [VFe7S8C(CO3)]2- BS7-235 model is compared to our [MoFe7S9C]- BS7-235 model of FeMoco via localized orbital analysis and is discussed in terms of local oxidation states and different degrees of delocalization. As previously found from Fe X-ray absorption spectroscopy studies, the Fe part of FeVco is reduced compared to FeMoco, and the calculations reveal Fe5 as locally ferrous. This suggests resting-state FeVco to be analogous to an unprotonated E1 state of FeMoco. Furthermore, V-Fe interactions in FeVco are not as strong compared to Mo-Fe interactions in FeMoco. These clear differences in the electronic structures of otherwise similar cofactors suggest an explanation for distinct differences in reactivity.


Assuntos
Metaloproteínas/química , Nitrogenase/química , Teoria Quântica , Catálise , Cristalografia por Raios X , Ligantes , Conformação Proteica
16.
Angew Chem Int Ed Engl ; 59(38): 16786-16794, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32488975

RESUMO

[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2 -stable state called Hinact . To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Šcrystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in-depth spectroscopic characterization by X-ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2 -stable hydrogenases and molecular catalysts.


Assuntos
Clostridium beijerinckii/enzimologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oxigênio/química , Espectrofotometria Infravermelho , Análise Espectral Raman , Enxofre/química , Espectroscopia por Absorção de Raios X
17.
Chem Rev ; 120(12): 5005-5081, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32237739

RESUMO

Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.


Assuntos
Nitrogenase/metabolismo , Metais Pesados/química , Metais Pesados/metabolismo , Modelos Moleculares , Nitrogenase/química , Análise Espectral
18.
Inorg Chem ; 59(7): 4634-4649, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196317

RESUMO

The elucidation of magnetostructural correlations between bridging ligand substitution and strength of magnetic coupling is essential to the development of high-temperature molecule-based magnetic materials. Toward this end, we report the series of tetraoxolene-bridged FeII2 complexes [(Me3TPyA)2Fe2(RL)]n+ (Me3TPyA = tris(6-methyl-2-pyridylmethyl)amine; n = 2: OMeLH2 = 3,6-dimethoxy-2,5-dihydroxo-1,4-benzoquinone, ClLH2 = 3,6-dichloro-2,5-dihydroxo-1,4-benzoquinone, Na2[NO2L] = sodium 3,6-dinitro-2,5-dihydroxo-1,4-benzoquinone; n = 4: SMe2L = 3,6-bis(dimethylsulfonium)-2,5-dihydroxo-1,4-benzoquinone diylide) and their one-electron-reduced analogues. Variable-temperature dc magnetic susceptibility data reveal the presence of weak ferromagnetic superexchange between FeII centers in the oxidized species, with exchange constants of J = +1.2(2) (R = OMe, Cl) and +0.3(1) (R = NO2, SMe2) cm-1. In contrast, X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy establish a ligand-centered radical in the reduced complexes. Magnetic measurements for the radical-bridged species reveal the presence of strong antiferromagnetic metal-radical coupling, with J = -57(10), -60(7), -58(6), and -65(8) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. The minimal effects of substituents in the 3- and 6-positions of RLx-• on the magnetic coupling strength is understood through electronic structure calculations, which show negligible spin density on the substituents and associated C atoms of the ring. Finally, the radical-bridged complexes are single-molecule magnets, with relaxation barriers of Ueff = 50(1), 41(1), 38(1), and 33(1) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. Taken together, these results provide the first examination of how bridging ligand substitution influences magnetic coupling in semiquinoid-bridged compounds, and they establish design criteria for the synthesis of semiquinoid-based molecules and materials.

19.
Phys Chem Chem Phys ; 22(11): 6100-6108, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32025665

RESUMO

In this study, we present experimental and theoretical results on dissociative electron attachment and dissociative ionisation for the potential FEBID precursor cis-Pt(CO)2Cl2. UHV surface studies have shown that high purity platinum deposits can be obtained from cis-Pt(CO)2Cl2. The efficiency and energetics of ligand removal through these processes are discussed and experimental appearance energies are compared to calculated thermochemical thresholds. The present results demonstrate the potential effectiveness of electron-induced reactions in the deposition of this FEBID precursor, and these are discussed in conjunction with surface science studies on this precursor and the design of new FEBID precursors.

20.
RSC Med Chem ; 11(12): 1386-1401, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34095846

RESUMO

Candida albicans is one of the most prevalent fungal pathogens involved in hospital acquired infections. It binds to glycans at the surface of epithelial cells and initiates infection. This process can be blocked by synthetic carbohydrates that mimic the structure of cell surface glycans. Herein we report the evaluation of a series of divalent glycosides featuring aromatic (benzene, squaramide) and bicyclic aliphatic (norbornene) scaffolds, with the latter being the first examples of their kind as small molecule anti-adhesion glycoconjugates. Galactosides 1 and 6, built on an aromatic core, were most efficient inhibitors of adhesion of C. albicans to buccal epithelial cells, displacing up to 36% and 48%, respectively, of yeast already attached to epithelial cells at 138 µM. Remarkably, cis-endo-norbornene 21 performed comparably to benzene-core derivatives. Conformational analysis reveals a preference for compounds 1 and 21 to adopt folded conformations. These results highlight the potential of norbornenes as a new class of aliphatic scaffolds for the synthesis of anti-adhesion compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...