Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Rehabil Assist Technol Eng ; 11: 20556683241239875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524246

RESUMO

Construction and manufacturing workers undertake physically laborious activities which put them at risk of developing serious musculoskeletal disorders (MSDs). In the EU, millions of workers are being affected by workplace-related MSDs, inflicting huge financial implications on the European economy. Besides that, increased health problems and financial losses, severe shortages of skilled labor also emerge. The work aims to create awareness and accelerate the adoption of exoskeletons among SMEs and construction workers to reduce MSDs. Large-scale manufacturers and automobile assemblers are more open to adopt exoskeletons, however, the use of exoskeletons in small and medium enterprises (SMEs) is still not recognized. This paper presents an experimental study demonstrating the advantages of different exoskeletons while performing workers' tasks. The study illustrates how the use of certain upper and lower body exoskeletons can reduce muscle effort. The muscle activity of the participants was measured using EMG sensors and was compared while performing designated tasks. It was found that up to 60% reduction in human effort can be achieved while performing the same tasks using exoskeletons. This can also help ill workers in rehabilitation and putting them back to work. The study concludes with pragmatic recommendations for future exoskeletons.

2.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765899

RESUMO

The emergence of Industry 4.0 has revolutionized the industrial sector, enabling the development of compact, precise, and interconnected assets. This transformation has not only generated vast amounts of data but also facilitated the migration of learning and optimization processes to edge devices. Consequently, modern industries can effectively leverage this paradigm through distributed learning to define product quality and implement predictive maintenance (PM) strategies. While computing speeds continue to advance rapidly, the latency in communication has emerged as a bottleneck for fast edge learning, particularly in time-sensitive applications such as PM. To address this issue, we explore Federated Learning (FL), a privacy-preserving framework. FL entails updating a global AI model on a parameter server (PS) through aggregation of locally trained models from edge devices. We propose an innovative approach: analog aggregation over-the-air of updates transmitted concurrently over wireless channels. This leverages the waveform-superposition property in multi-access channels, significantly reducing communication latency compared to conventional methods. However, it is vulnerable to performance degradation due to channel properties like noise and fading. In this study, we introduce a method to mitigate the impact of channel noise in FL over-the-air communication and computation (FLOACC). We integrate a novel tracking-based stochastic approximation scheme into a standard federated stochastic variance reduced gradient (FSVRG). This effectively averages out channel noise's influence, ensuring robust FLOACC performance without increasing transmission power gain. Numerical results confirm our approach's superior communication efficiency and scalability in various FL scenarios, especially when dealing with noisy channels. Simulation experiments also highlight significant enhancements in prediction accuracy and loss function reduction for analog aggregation in over-the-air FL scenarios.

3.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016014

RESUMO

Industry 4.0 lets the industry build compact, precise, and connected assets and also has made modern industrial assets a massive source of data that can be used in process optimization, defining product quality, and predictive maintenance (PM). Large amounts of data are collected from machines, processed, and analyzed by different machine learning (ML) algorithms to achieve effective PM. These machines, assumed as edge devices, transmit their data readings to the cloud for processing and modeling. Transmitting massive amounts of data between edge and cloud is costly, increases latency, and causes privacy concerns. To address this issue, efforts have been made to use edge computing in PM applications., reducing data transmission costs and increasing processing speed. Federated learning (FL) has been proposed a mechanism that provides the ability to create a model from distributed data in edge, fog, and cloud layers without violating privacy and offers new opportunities for a collaborative approach to PM applications. However, FL has challenges in confronting with asset management in the industry, especially in the PM applications, which need to be considered in order to be fully compatible with these applications. This study describes distributed ML for PM applications and proposes two federated algorithms: Federated support vector machine (FedSVM) with memory for anomaly detection and federated long-short term memory (FedLSTM) for remaining useful life (RUL) estimation that enables factories at the fog level to maximize their PM models' accuracy without compromising their privacy. A global model at the cloud level has also been generated based on these algorithms. We have evaluated the approach using the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) dataset to predict engines' RUL Experimental results demonstrate the advantage of FedSVM and FedLSTM in terms of model accuracy, model convergence time, and network usage resources.


Assuntos
Algoritmos , Aprendizado de Máquina , Simulação por Computador , Privacidade , Máquina de Vetores de Suporte
4.
Sensors (Basel) ; 21(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300573

RESUMO

The availability of wireless networked control systems (WNCSs) has increased the interest in controlling multi-agent systems. Multiple feedback loops are closed over a shared communication network in such systems. An event triggering algorithm can significantly reduce network usage compared to the time triggering algorithm in WNCSs, however, the control performance is insecure in an industrial environment with a high probability of the packet dropping. This paper presents the design of a distributed event triggering algorithm in the state feedback controller for multi-agent systems, whose dynamics are subjected to the external interaction of other agents and under a random single packet drop scenario. Distributed event-based state estimation methods were applied in this work for designing a new event triggering algorithm for multi-agent systems while retaining satisfactory control performance, even in a high probability of packet drop condition. Simulation results for a multi-agent application show the main benefits and suitability of the proposed event triggering algorithm for multi-agent feedback control in WNCSs with packet drop imperfection.

5.
Med Biol Eng Comput ; 57(2): 339-367, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367391

RESUMO

In this survey, we review the field of human shoulder functional kinematic representations. The central question of this review is to evaluate whether the current approaches in shoulder kinematics can meet the high-reliability computational challenge. This challenge is posed by applications such as robot-assisted rehabilitation. Currently, the role of kinematic representations in such applications has been mostly overlooked. Therefore, we have systematically searched and summarised the existing literature on shoulder kinematics. The shoulder is an important functional joint, and its large range of motion (ROM) poses several mathematical and practical challenges. Frequently, in kinematic analysis, the role of the shoulder articulation is approximated to a ball-and-socket joint. Following the high-reliability computational challenge, our review challenges this inappropriate use of reductionism. Therefore, we propose that this challenge could be met by kinematic representations, that are redundant, that use an active interpretation and that emphasise on functional understanding.


Assuntos
Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiologia , Ombro/fisiologia , Animais , Humanos , Movimento/fisiologia , Reprodutibilidade dos Testes , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...