Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 215(1): 47-57, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37578839

RESUMO

Primary adrenal insufficiency (PAI) is most often caused by an autoimmune destruction of the adrenal cortex resulting in failure to produce cortisol and aldosterone. The aetiology is thought to be a combination of genetic and environmental risk factors, leading to breakdown of immunological tolerance. Regulatory T cells (Tregs) are deficient in many autoimmune disorders, but it is not known whether they contribute to development of PAI. We aimed to investigate the frequency and function of naive and expanded Tregs in patients with PAI and polyendocrine syndromes compared to age- and gender-matched healthy controls. Flow cytometry was used to assess the frequency and characterize functional markers of blood Tregs in PAI (N = 15). Expanded Treg suppressive abilities were assessed with a flow cytometry based suppression assay (N = 20), while bulk RNA-sequencing was used to examine transcriptomic differences (N = 16) and oxygen consumption rate was measured by a Seahorse cell metabolic assay (N = 11). Our results showed that Treg frequency and suppressive capacity were similar between patients and controls. An increased expression of killer-cell leptin-like receptors and mitochondrial genes was revealed in PAI patients, but their expanded Tregs did not display signs of mitochondrial dysfunction. Our findings do not support a clear role for Tregs in the contribution of PAI development.


Assuntos
Doença de Addison , Linfócitos T Reguladores , Humanos , Doença de Addison/genética , Tolerância Imunológica , Hidrocortisona/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35772642

RESUMO

Fish embryonic hatching glands (HGs) secrete choriolysin-zymogens, which when activated degrade the chorion, allowing larval exit. Thus, hatching encompasses two dissimilar choriolysin-processes: pre-choriolysis including activated choriolysins accessing the perivitelline space (PVS), followed by choriolysis. Discovery of serine-proteolytic zonase in Atlantic salmon hatching fluid (HF) raises questions concerning its participation in hatching. This work aims to identify salmon choriolysins, and evaluate their role and that of zonase during hatching. Precocious salmon hatching occurs under alkaline conditions, producing an HF containing similar metallo- and serine- proteolytic activities. Purified zonase is selectively inhibited by peFabloc, whose MW (580 Da) allows diffusion through the chorion into the PVS. Without apparent toxicity, brief peFabloc-pretreatment (2 mM) of salmon eggs reduced precocious hatching substantially, compatible with a zonase-relevance for hatching. Atlantic salmon differed from other fishes since their HGs were not immuno-stained by polyclonal antibodies against pike choriolysins. However, cloning and sequencing experiments revealed a single low choriolytic enzyme (LCE) of 69% identity to pike LCE. Similar experiments with high choriolytic enzymes (HCEs) revealed two types (HCE-1 and HCE-2) with respectively 71% and 91% identity to pike HCE-1 & HCE-2. In situ hybridization revealed typical HGs. However, zebrafish-choriolysis is achieved by HCE-class choriolysins alone. Another zebrafish choriolysin (HE2) was not expressed. Peptide-bond hydrolysis by non-choriolytic zonase mimicks HCE-action generating hydrophilic sites for LCE-choriolytic catalysis. Ultimately, precise definitions of choriolytic and pre-choriolytic catalysis requires developmental genetics. Our data are compatible with a complex pre-choriolytic hatching-stage in Atlantic salmon, before LCE-choriolysis degrades the chorion.


Assuntos
Oryzias , Salmo salar , Sequência de Aminoácidos , Animais , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Oryzias/metabolismo , Peptídeo Hidrolases/metabolismo , Salmo salar/metabolismo , Serina/metabolismo , Peixe-Zebra/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 828780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273571

RESUMO

Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERß and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk.


Assuntos
Adipócitos , Epigênese Genética , Adipócitos/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Obesidade/genética , Obesidade/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 41(10): 2563-2574, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34348490

RESUMO

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos/metabolismo , Obesidade/metabolismo , Paniculite/metabolismo , Fator 5 Associado a Receptor de TNF/deficiência , Adipócitos/imunologia , Adipócitos/patologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Adiposidade , Adulto , Idoso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Paniculite/genética , Paniculite/imunologia , Paniculite/patologia , Transdução de Sinais , Fator 5 Associado a Receptor de TNF/genética
5.
Diabetes ; 70(3): 680-695, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33408126

RESUMO

Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Células 3T3-L1 , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Genótipo , Glutationa/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Peixe-Zebra
6.
Sci Rep ; 10(1): 20164, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214660

RESUMO

Fibrillar collagen COL6α3 in adipose tissue has been associated with obesity, inflammation, insulin resistance and cancer. We here aimed to identify novel transcriptional regulators of COL6A3 expression. Based on a transcriptome dataset of adipose tissue, we identified strong correlations for 56 genes with COL6A3 mRNA, including targets of TGF-ß/SMAD signaling. Among the identified candidates, the homeobox transcription factor PRRX1 showed a particularly striking co-expression with COL6A3, validated across several different cohorts, including patients with extreme obesity, insulin sensitive and resistant obesity (subcutaneous and omental), after profound fat loss (subcutaneous), and lean controls (subcutaneous). In human and mouse adipose cells, PRRX1 knockdown reduced COL6A3 mRNA and PRRX1 overexpression transactivated a reporter construct with the endogenous human COL6A3 promoter. Stable PRRX1 overexpression in 3T3-L1 cells induced Col6a3 mRNA threefold specifically after adipogenic induction, whereas TGF-ß1 treatment upregulated Col6a3 mRNA also in the preadipocyte state. Interestingly, pro-inflammatory stimulus (i.e., TNF-α treatment) decreased PRRX1-mediated Col6a3 transactivation and mRNA expression, supporting a role for this mechanism in the regulation of adipose tissue inflammation. In conclusion, we identified the homeobox factor PRRX1 as a novel transcriptional regulator associated with COL6A3 expression, providing new insight into the regulatory mechanisms of altered adipose tissue function in obesity and insulin resistance.


Assuntos
Tecido Adiposo/citologia , Colágeno Tipo VI/genética , Proteínas de Homeodomínio/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Obesidade/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Metabolism ; 103: 154014, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751577

RESUMO

BACKGROUND: Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT) mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in mice and humans. However, the underlying mechanisms of the Irx control over beiging are still largely unknown, as illustrated by recent reports showing divergent effects of Irx3 on adipocyte metabolism and function. Here, we investigated the role of Irx3 in controlling beige preadipocyte function and differentiation. METHODS: Stable knock out of Irx3 in ME3 mouse preadipocytes capable of beiging was performed using a CRISPR-Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment analysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells were measured by WST-1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry and mitochondrial respiration was investigated by Seahorse assay. RESULTS: Irx3 was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes. We further observed profound changes in numerous genes during both early and late stages of adipogenic differentiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphorylation (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to chondrogenic stimuli. CONCLUSIONS: Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that, while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental loss of adipogenic differentiation capacity.


Assuntos
Adipogenia/genética , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos Bege/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Fatores de Transcrição/genética
8.
Int J Obes (Lond) ; 43(11): 2151-2162, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538277

RESUMO

OBJECTIVE: A causal obesity risk variant in the FTO locus was recently shown to inhibit adipocyte thermogenesis via increased adipose expression of the homeobox transcription factors IRX3 and IRX5. However, causal effects of IRX5 on fat storage remain to be shown in vivo, and discovery of downstream mediators may open new therapeutic avenues. METHODS: 17 WT and 13 Irx5 knockout (KO) mice were fed low-fat control (Ctr) or high-fat (HF) diet for 10 weeks. Body weight, energy intake and fat mass were measured. Irx5-dependent gene expression was explored by transcriptome analysis of epididymal white adipose tissue (eWAT), confirmatory obesity-dependent expression in human adipocytes in vivo, and in vitro knock-down, overexpression and transcriptional activation assays. RESULTS: Irx5 knock-out mice weighed less, had diminished fat mass, and were protected from diet-induced fat accumulation. Key adipose mitochondrial genes Pparγ coactivator 1-alpha (Pgc-1α) and uncoupling protein 1 (Ucp1) were upregulated, and a gene network centered on amyloid precursor protein (App) was downregulated in adipose tissue of knock-out mice and in isolated mouse adipocytes with stable Irx5 knock-down. An APP-centered network was also enriched in isolated adipocytes from obese compared to lean humans. IRX5 overexpression increased APP promoter activity and both IRX5 and APP inhibited transactivation of PGC-1α and UCP1. Knock-down of Irx5 or App increased mitochondrial respiration in adipocytes. CONCLUSION: Irx5-KO mice were protected from obesity and this can partially be attributed to reduced adipose App and improved mitochondrial respiration. This novel Irx5-App pathway in adipose tissue is a possible therapeutic entry point against obesity.


Assuntos
Adipócitos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Homeodomínio , Mitocôndrias/metabolismo , Obesidade , Fatores de Transcrição , Adulto , Animais , Células Cultivadas , Feminino , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
9.
Obes Facts ; 10(1): 52-60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278496

RESUMO

One might expect that a perception of obesity being a risk factor and disease, contributes to effective obesity prevention and management strategies. However, obesity rates continue to increase worldwide. The question arises whether obesity is truly perceived as a risk factor and a disease. This paper aims at describing perception of obesity as risk factor and disease among individuals seeking care, individuals not seeking care, the society, and different professionals having a role in the field of obesity. The paper is a reflection of the lecture on the topic that was given at the EASO's New Investigators United's Summer School 2016 in Portugal and the discussion with the new investigators and other senior speakers. Individual obese patients seeking help are very much aware of obesity being a risk factor and disease, but perceptions regarding obesity seem to be flawed among those who do not seek help for obesity. Also, misperceptions regarding obesity play a role at different levels, including society, different political levels, the fields of health care and social work, prevention organizations, and the food and marketing industry. The food and marketing industry has an enormous role in changing perceptions by the society and policy makers. Obesity rates will continue to increase as long as individuals, the society, and professionals at different levels have false interpretations of the severity of obesity. Severe action is needed against those who are playing a role in maintaining false perceptions of obesity as a risk factor and disease.


Assuntos
Nível de Saúde , Obesidade/psicologia , Percepção , Atenção à Saúde , Comportamentos Relacionados com a Saúde , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde , Humanos , Obesidade/prevenção & controle , Obesidade/terapia , Fatores de Risco
10.
Mol Cell Endocrinol ; 419: 92-101, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26455881

RESUMO

Fasting hormones activate the cAMP/PKA signaling pathway and stimulate expression of hepatic gluconeogenic enzymes including glucose-6-phosphatase (G6Pase). Previously it was shown that steroid receptor coactivator 2 (SRC-2) knock-out mice exhibit fasting hypoglycemia and that SRC-2 coactivates RAR-related orphan receptor alpha (RORα) at the proximal G6Pase promoter. We have investigated the upstream regulation and functional implications of this RORα/SRC-2 complex on G6Pase expression. In HepG2 cells, overexpression of the catalytic PKA subunit (PKA-Cα) reduced the SRC-2 protein level, recruitment to the G6Pase promoter, and its ability to coactivate RORα. Knock-down and transactivation experiments employing G6Pase promoter constructs demonstrated that RORα and SRC-2 are required for PGC-1α to stimulate G6Pase expression. These results suggest that PKA inhibits SRC-2 coactivation of RORα and in turn reduces PGC-1α dependent regulation of G6Pase. This indirect feedback mechanism may underlie the suppression of gluconeogenesis throughout long-term starvation.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Regulação para Baixo , Glucose-6-Fosfatase/genética , Coativador 2 de Receptor Nuclear/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação da Expressão Gênica , Gluconeogênese , Células Hep G2 , Humanos , Coativador 2 de Receptor Nuclear/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
11.
Sci Rep ; 5: 16430, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26548416

RESUMO

The ability of the anti-diabetic drug metformin to inhibit anabolic processes including gluconeogenesis and lipogenesis is partly attributable to activation of the AMP-activated protein kinase (AMPK) pathway. The p160 steroid receptor coactivator 2 (SRC-2) is a key regulator of cellular metabolism and drives expression of the gluconeogenic enzyme glucose-6-phosphatase (G6Pc). Here, we uncovered a role for SRC-2 in the metabolic reprogramming imposed by metformin. In FaO cells, metformin dose-dependently reduced mRNA expression of SRC-2. Microarray analysis of metformin-treated cells revealed an overrepresentation of downregulated genes involved in biosynthesis of lipids and cholesterol. Several metformin-regulated genes including fatty acid synthase (FASN) were validated as transcriptional targets of SRC-2 with promoters characterized by sterol regulatory element (SRE) binding protein (SREBP) recognition sequences. Transactivation assays of the FASN promoter confirmed that SRC-2 is a coactivator of SREBP-1. By suppressing SRC-2 at the transcriptional level, metformin impeded recruitment of SRC-2 and RNA polymerase II to the G6Pc promoter and to SREs of mutual SRC-2/SREBP-1 target gene promoters. Hepatocellular fat accretion was reduced by metformin or knock-down of both SRC-2 and SREBP-1. Accordingly we propose that metformin inhibits glucose and lipid biosynthesis partly by downregulating SRC-2 gene expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Lipogênese/efeitos dos fármacos , Metformina/farmacologia , Coativador 2 de Receptor Nuclear/genética , Vias Biossintéticas/efeitos dos fármacos , Colesterol/biossíntese , Ácido Graxo Sintase Tipo I/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/biossíntese , Humanos , Metabolismo dos Lipídeos/genética , Coativador 2 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...