Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 231(2-3): 147-58, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17210216

RESUMO

In the rat, some aromatic solvents cause a high level of ototoxicity that is characterized by damage to outer hair cells in the cochlea, which results in irreversible hearing loss. However, there is a vast difference in their potency. Among the three isomers of xylene, only para-xylene has been shown to be ototoxic in the rat. Moreover, all the species do not show the same susceptibility to ototoxic solvents, the rat being the most susceptible and the guinea pig seeming resistant to this ototoxic effect. The objective of the study was to determine whether toxicokinetic factors could explain the differences in ototoxicity observed among the three isomers of xylene in the rat and the species-dependent ototoxicity in the rat and the guinea pig. Blood and brain concentrations of each isomer were monitored in Sprague-Dawley rats treated orally by gastric intubation with a single dose or a 10 day-repeated treatment of 8.47 mmol/kg (an ototoxic dosage for para-xylene) of each isomer. Moreover, histology of the cochlea was carried out and the toxicokinetics of meta-xylene was monitored in rats treated with a single dose or a 10 day-repeated treatment of 16.94 mmol/kg meta-xylene, a non-ototoxic isomer. Similarly, histology of the cochlea was carried out and the toxicokinetics of para-xylene was followed in guinea pigs treated by gavage with a single dose or a 10 day-repeated treatment of 8.47 mmol/kg para-xylene. Finally, the blood and brain concentrations of para-xylene were measured in both the rats and the guinea pigs after a 4-h exposure to 1800 ppm of para-xylene. Among the three isomers studied, para-xylene yielded the highest blood and brain concentrations in the acutely and repeatedly exposed rats. When given a high dosage of meta-xylene (16.94 mmol/kg), the rats showed blood and brain concentrations of meta-xylene in the same order as those obtained with 8.47 mmol/kg para-xylene, but no outer hair cell loss was observed. No outer hair cell loss was observed in the guinea pigs treated with para-xylene. Whatever the exposure pattern, the blood and brain concentrations of para-xylene in the rats were 3.1-9.5 times higher than those measured in the guinea pigs. These results indicate that toxicokinetic factors cannot explain the differences in ototoxicity observed with the three isomers in the rat. However, they suggest that the differences in susceptibility to para-xylene observed between the rats and the guinea pigs might be due to toxicokinetic factors.


Assuntos
Cóclea/efeitos dos fármacos , Solventes/farmacocinética , Xilenos/farmacocinética , Animais , Cóclea/metabolismo , Cóclea/patologia , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Exposição por Inalação , Isomerismo , Masculino , Ratos , Ratos Sprague-Dawley , Solventes/química , Solventes/toxicidade , Relação Estrutura-Atividade , Xilenos/química , Xilenos/toxicidade
2.
Environ Toxicol Pharmacol ; 21(3): 276-82, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-21783669

RESUMO

Cochlear disruptions induced by toluene were shown in the rat but not in the guinea pig. To better understand the differences between species, three investigations were carried out to study (1) the blood affinity and the pulmonary uptake of the solvent, (2) its clearance and (3) its urinary elimination in both species. The blood affinity of toluene was +44% higher in the rat than in the guinea pig (14.4µg/g versus 10µg/g). Similarly, the pulmonary uptake of toluene was approximately 46.5% more efficient in the rat than in the guinea pig (75.4µg/g versus 40.3µg/g) after 3h inhalation of 1500ppm toluene. Therefore, the physicochemical composition of the blood could explain the difference in the uptake performances between rats and guinea pigs. The clearance of the toluene showed that 10min after an intravenous administration of 400µL of vehicle containing 28µL (43mgkg(-1)) of toluene, the solvent concentration was approximately threefold higher in the rat than in the guinea pig blood. The last experiment was carried out to compare the concentrations of the urinary metabolites. The concentrations of o-cresol, hippuric and benzyl mercapturic acids measured in the urines were different before and after the toluene injection. These data give evidence for large differences of toluene uptake and metabolism between rat and guinea pig. Therefore, it seems reasonable to claim that guinea pigs cochleas are not susceptible to toluene as the blood burden of solvent does not reach the concentration required to induce permanent damages.

3.
Environ Toxicol Pharmacol ; 19(3): 555-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-21783526

RESUMO

Toluene is the most widely used industrial solvent. It has been shown to cause cochlear disruptions in rats but markedly less ototoxic effects in guinea pigs. Susceptibility to the ototoxic properties of toluene is, therefore, species specific. In recent publications, an important difference in the solvent concentration in blood has been identified when rats and guinea pigs were exposed in strictly identical experimental conditions. Solvent concentrations in blood were greater in rats than in guinea pigs. The present studies were designed to compare blood affinity and toxicokinetic parameters of toluene in an attempt to understand the susceptibility differences in both species. The in vitro experiment, in which the headspace concentration of toluene was measured within a sealed vial containing blood, highlighted the greater toluene partition coefficient in rat than in guinea pig blood. The in vivo experiment showed that 10min after a single intravenous administration of 28µL of toluene, the solvent concentration is approximately two-fold lower in guinea pig than in rat blood. Based on the toxicokinetic parameters of toluene and on the relative partition coefficient of toluene in blood, it seems plausible that guinea pigs are not susceptible to organic solvents because the solvent concentration in blood does not reach the concentration required to induce permanent damage. Attempts to explain differences of vulnerability between the rat and guinea pig are addressed in the present paper.

4.
Neurotoxicol Teratol ; 21(4): 427-34, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10440486

RESUMO

It is well established that organic solvents such as toluene and styrene are ototoxic in the rat; however, the intoxication route used to reach the organ of Corti is still questionable. The distribution of toluene and styrene in various tissues of Long-Evans rats (n = 2 x 8) was studied after inhalation of either 1750 ppm toluene or 1750 ppm styrene for 10 h (6 consecutive h + 4 h the following day). At the end of the solvent exposures, blood, brain, auditory nerves, the organ of Corti, cerebrospinal (CSF), and inner ear fluids (IEF) were sampled or removed to measure the rates of solvent uptake in each tissue by gas chromatography. Results indicate that CSF and IEF were free from detectable solvents, whereas the organ of Corti, the nerves, and the brain were contaminated. Therefore, both toluene- and styrene-induced hearing losses are caused by tissue intoxication rather than by fluid contamination. It is proposed that the outer sulcus is used as an intoxication route to reach the organ of Corti.


Assuntos
Cóclea/efeitos dos fármacos , Órgão Espiral/metabolismo , Estireno/farmacocinética , Tolueno/farmacocinética , Administração por Inalação , Animais , Encéfalo/metabolismo , Cromatografia Gasosa , Masculino , Ratos , Ratos Long-Evans , Estireno/sangue , Estireno/líquido cefalorraquidiano , Tolueno/sangue , Tolueno/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA