Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613036

RESUMO

The liver plays a crucial role in glucose metabolism. Obesity and a diet rich in fats (HFD) contribute to the accumulation of intracellular lipids. The aim of the study was to explore the involvement of acyl-CoA synthetase 1 (ACSL1) in bioactive lipid accumulation and the induction of liver insulin resistance (InsR) in animals fed an HFD. The experiments were performed on male C57BL/6 mice divided into the following experimental groups: 1. Animals fed a control diet; 2. animals fed HFD; and 3. HFD-fed animals with the hepatic ACSL1 gene silenced through a hydrodynamic gene delivery technique. Long-chain acyl-CoAs, sphingolipids, and diacylglycerols were measured by LC/MS/MS. Glycogen was measured by means of a commercially available kit. The protein expression and phosphorylation state of the insulin pathway was estimated by Western blot. HFD-fed mice developed InsR, manifested as an increase in fasting blood glucose levels (202.5 mg/dL vs. 130.5 mg/dL in the control group) and inhibition of the insulin pathway, which resulted in an increase in the rate of gluconeogenesis (0.420 vs. 0.208 in the control group) and a decrease in the hepatic glycogen content (1.17 µg/mg vs. 2.32 µg/mg in the control group). Hepatic ACSL1 silencing resulted in decreased lipid content and improved insulin sensitivity, accounting for the decreased rate of gluconeogenesis (0.348 vs. 0.420 in HFD(+/+)) and the increased glycogen content (4.3 µg/mg vs. 1.17 µg/mg in HFD(+/+)). The elevation of gluconeogenesis and the decrease in glycogenesis in the hepatic tissue of HFD-fed mice resulted from cellular lipid accumulation. Inhibition of lipid synthesis through silencing ACSL1 alleviated HFD-induced hepatic InsR.


Assuntos
Resistência à Insulina , Insulinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado , Diglicerídeos , Glicogênio
2.
Med Sci Monit ; 30: e942507, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217285

RESUMO

BACKGROUND Smoking nicotine is considered to be one of the most harmful addictions, leading to the development of a number of health complications, including many pathologies in the oral cavity. The aim of this study was to examine the effect of smoking traditional cigarettes, e-cigarettes, and heat-not-burn products on profiles of salivary lipids and lipid peroxidation products in the unstimulated and stimulated saliva of healthy young adults with a smoking habit of up to 3 years. MATERIAL AND METHODS We enrolled 3 groups of 25 smoking patients each and a control group matched for age, gender, and oral status. In saliva collected from patients from the study groups and participants from the control group, the concentrations of sphingolipids: sphingosine, sphinganine, sphingosine-1-phosphate, ceramides, and salivary lipid peroxidation products - malondialdehyde (MDA) and 4-hydroxynonenal (HNE) - were measured. The normality of distribution was assessed using the Shapiro-Wilk test. For comparison of the results, one-way analysis of variance (ANOVA) followed by post hoc Tukey test was used. RESULTS We demonstrated that each type of smoking causes a decrease in the concentration of salivary lipids, and there was an increased concentration of salivary MDA and 4-HNE. CONCLUSIONS Smoking in the initial period of addiction leads to an increase in the concentration of lipid peroxidation products through increased oxidative stress, leading to disturbance of the lipid balance of the oral cavity (eg, due to damage to cell membranes).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Adulto Jovem , Fumar/efeitos adversos , Temperatura Alta , Estresse Oxidativo , Lipídeos , Saliva/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446046

RESUMO

Colorectal cancer is a heterogenous group of neoplasms showing a variety of clinical and pathological features depending on their anatomical location. Sphingolipids are involved in the formation and progression of cancers, and their changes are an important part of the abnormalities observed during carcinogenesis. Because the course of rectal and colonic cancer differs, the aim of the study was to assess whether the sphingolipid profile is also different in tumors of these two regions. Using a combination of ultra-high-performance liquid chromatography combined with triple quadrupole mass spectrometry, differences in the amounts of cellular sphingolipids were found in colorectal cancer. Sphingosine content was higher in rectal cancer than in adjacent healthy tissue, while the content of two ceramides (C18:0-Cer and C20:0-Cer) was lower. In colon cancer, a higher content of sphingosine, sphinganine, sphingosine-1-phosphate, and two ceramides (C14:0-Cer and C24:0-Cer) was found compared to healthy tissue, but there was no decrease in the amount of any of the assessed sphingolipids. In rectal cancer, the content of sphinganine and three ceramides (C16:0-Cer, C22:0-Cer, C24:0-Cer), as well as the entire pool of ceramides, was significantly lower compared to colon cancer. The S1P/Cer ratio in rectal cancer (S1P/C18:1-Cer, S1P/C20:0-Cer, S1P/C22:0-Cer, S1P/C24:1-Cer) and in colon cancer (S1P/C18:0-Cer, S1P/C18:1-Cer, S1P/C20:0-Cer) was higher than in adjacent healthy tissue and did not differ between the two sites (rectal cancer vs. colonic cancer). It seems that the development of colorectal cancer is accompanied by complex changes in the metabolism of sphingolipids, causing not only qualitative shifts in the ceramide pool of cancer tissue but also quantitative disturbances, depending on the location of the primary tumor.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo
4.
J Biol Chem ; 299(6): 104815, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178918

RESUMO

Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes. However, many of the studies involved in the discovery of deleterious ceramide actions used a nonphysiological, cell-permeable, short-chain ceramide analog, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes deacylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous monounsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and type 2 diabetes.


Assuntos
Ceramidas , Resistência à Insulina , Humanos , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108361

RESUMO

Sphingosine-1-phosphate (S1P) and ceramides (Cer) are engaged in key events of signal transduction, but their involvement in the pathogenesis of colorectal cancer is not conclusive. The aim of our study was to investigate how the modulation of sphingolipid metabolism through the silencing of the genes involved in the formation (SPHK1) and degradation (SGPL1) of sphingosine-1-phosphate would affect the sphingolipid profile and apoptosis of HCT-116 human colorectal cancer cells. Silencing of SPHK1 expression decreased S1P content in HCT-116 cells, which was accompanied by an elevation in sphingosine, C18:0-Cer, and C18:1-Cer, increase in the expression and activation of Caspase-3 and -9, and augmentation of apoptosis. Interestingly, silencing of SGLP1 expression increased cellular content of both the S1P and Cer (C16:0-; C18:0-; C18:1-; C20:0-; and C22:0-Cer), yet inhibited activation of Caspase-3 and upregulated protein expression of Cathepsin-D. The above findings suggest that modulation of the S1P level and S1P/Cer ratio regulates both cellular apoptosis and CRC metastasis through Cathepsin-D modulation. The cellular ratio of S1P/Cer seems to be a crucial component of the above mechanism.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Esfingosina/metabolismo , Caspase 3/genética , Apoptose , Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo , Esfingolipídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Catepsinas/farmacologia
6.
J Clin Med ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233480

RESUMO

(1) Background: Disturbances in the sphingolipid profile are observed in many diseases. There are currently no data available on the evaluation of sphingolipids and ceramides in cholelithiasis in children. The aim of this study was to evaluate the concentrations of sphingolipids in the sera of pediatric patients with gallstones. We determined their relationship with anthropometric and biochemical parameters. (2) Methods: The concentrations of sphingolipids in serum samples were evaluated using a quantitative method, ultra-high-performance liquid chromatography-tandem mass spectrometry. (3) Results: The prospective study included 48 children and adolescents diagnosed with gallstones and 38 controls. Serum concentrations of total cholesterol (TC); sphinganine (SPA); ceramides-C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer and C24:1-Cer; and lactosylceramides-C16:0-LacCer, C18:0-LacCer, C18:1-LacCer, C24:0-LacCer and C24:1-LacCer differed significantly between patients with cholelithiasis and without cholelithiasis. After adjusting for age, gender, obesity and TC and TG levels, we found the best differentiating sphingolipids for cholelithiasis in the form of decreased SPA, C14:0-Cer, C16:0-Cer, C24:1-LacCer and C24:0-LacCer concentration and increased C20:0-Cer, C24:1-Cer, C16:0-LacCer and C18:1-LacCer. The highest area under the curve (AUC), specificity and sensitivity were determined for C16:0-Cer with cholelithiasis diagnosis. (4) Conclusions: Our results suggest that serum sphingolipids may be potential biomarkers in pediatric patients with cholelithiasis.

7.
Nutrients ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35745168

RESUMO

Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.


Assuntos
Aneurisma da Aorta Abdominal , Adiponectina , Aneurisma da Aorta Abdominal/etiologia , Ceramidas , Humanos , Inflamação/metabolismo , Obesidade/complicações , Esfingolipídeos , Fator de Necrose Tumoral alfa
8.
Ann Agric Environ Med ; 29(2): 246-251, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35767758

RESUMO

INTRODUCTION AND OBJECTIVE: Epidemiological studies have demonstrated a strong association between cigarette smoking (CS) and chronic pancreatitis (CP); however, the exact mechanisms of this phenomenon remains unknown. The authors have previously shown that increased Ras expression activates the NF-κB mediated pathway and promotes development of CP. However, it is unclear whether a similar phenomenon occurs in CS-induced CP. Therefore, the aim of the study was to determine whether CS increases the expression of K-Ras, and promotes the development of CP in mice exposed to repeated episodes of acute pancreatitis (AP). MATERIAL AND METHODS: C57BL6/cmdb mice were exposed to CS or a sham treatment for 12 weeks. After one week of exposure, half of the animals from both groups were additionally subjected to repeated cerulein treatment (once a week, for 10 consecutive weeks) to mimic recurrent episodes of AP. Extension of pancreatic damage was determined histologically by H&E and Trichrome staining. The expression of K-Ras protein and downstream components (NF-κB, Cox-2, TGF-ß) was evaluated by immunohistochemistry. RESULTS: C57BL6/cmdb mice exposed to CS or cerulein alone did not develop any chronic pancreatic damage. However, concomitant treatment with both of these agents caused focal acinar atrophy, with slight intralobular and perivascular areas of fibrosis, and inflammatory cells infiltration resembling mild CP. Moreover, immunohistochemistry examinations revealed increased pancreatic expression of K-Ras and NF-κB only in mice treated both with CS and cerulein. CONCLUSIONS: CS promotes development of CP in mice exposed to repeated episodes of AP. This process may be, at least partially, related to increased expression of K-Ras and NF-κB protein.


Assuntos
Fumar Cigarros , NF-kappa B , Pancreatite Crônica , Proteínas Proto-Oncogênicas p21(ras) , Doença Aguda , Animais , Ceruletídeo/toxicidade , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/biossíntese , NF-kappa B/genética , NF-kappa B/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406688

RESUMO

Skeletal muscles account for ~80% of insulin-stimulated glucose uptake and play a key role in lipid metabolism. Consumption of a high-fat diet (HFD) contributes to metabolic changes in muscles, including the development of insulin resistance. The studies carried out to date indicate that the accumulation of biologically active lipids, such as long-chain acyl-CoA, diacylglycerols and ceramides, play an important role in the development of insulin resistance in skeletal muscles. Unfortunately, it has not yet been clarified which of these lipid groups plays the dominant role in inducing these disorders. In order to explore this topic further, we locally silenced the gene encoding serine palmitoyltransferase (SPT) in the gastrocnemius muscle of animals with HFD-induced insulin resistance. This enzyme is primarily responsible for the first step of de novo ceramide biosynthesis. The obtained results confirm that the HFD induces the development of whole-body insulin resistance, which results in inhibition of the insulin pathway. This is associated with an increased level of biologically active lipids in the muscles. Our results also demonstrate that silencing the SPT gene with the shRNA plasmid reduces the accumulation of ceramides in gastrocnemius muscle, which, in turn, boosts the activity of the insulin signaling pathway. Furthermore, inhibition of ceramide synthesis does not significantly affect the content of other lipids, which suggests the leading role of ceramide in the lipid-related induction of skeletal muscle insulin resistance.


Assuntos
Ceramidas , Resistência à Insulina , Serina C-Palmitoiltransferase , Animais , Ceramidas/metabolismo , Dieta Hiperlipídica , Inativação Gênica , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Músculo Esquelético/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
10.
Acta Physiol (Oxf) ; 235(3): e13816, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347845

RESUMO

AIM & METHODS: Extreme endurance exercise provides a valuable research model for understanding the adaptive metabolic response of older and younger individuals to intense physical activity. Here, we compare a wide range of metabolic and physiologic parameters in two cohorts of seven trained men, age 30 ± 5 years or age 65 ± 6 years, before and after the participants travelled ≈3000 km by bicycle over 15 days. RESULTS: Over the 15-day exercise intervention, participants lost 2-3 kg fat mass with no significant change in body weight. V̇O2 max did not change in younger cyclists, but decreased (p = 0.06) in the older cohort. The resting plasma FFA concentration decreased markedly in both groups, and plasma glucose increased in the younger group. In the older cohort, plasma LDL-cholesterol and plasma triglyceride decreased. In skeletal muscle, fat transporters CD36 and FABPm remained unchanged. The glucose handling proteins GLUT4 and SNAP23 increased in both groups. Mitochondrial ROS production decreased in both groups, and ADP sensitivity increased in skeletal muscle in the older but not in the younger cohort. CONCLUSION: In summary, these data suggest that older but not younger individuals experience a negative adaptive response affecting cardiovascular function in response to extreme endurance exercise, while a positive response to the same exercise intervention is observed in peripheral tissues in younger and older men. The results also suggest that the adaptive thresholds differ in younger and old men, and this difference primarily affects central cardiovascular functions in older men after extreme endurance exercise.


Assuntos
Exercício Físico , Músculo Esquelético , Adulto , Idoso , Peso Corporal , Exercício Físico/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Descanso/fisiologia , Triglicerídeos/metabolismo
11.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053322

RESUMO

Skeletal muscle is perceived as a major tissue in glucose and lipid metabolism. High fat diet (HFD) lead to the accumulation of intramuscular lipids, including: long chain acyl-CoA, diacylglycerols, and ceramides. Ceramides are considered to be one of the most important lipid groups in the generation of skeletal muscle insulin resistance. So far, it has not been clearly established whether all ceramides adversely affect the functioning of the insulin pathway, or whether there are certain ceramide species that play a pivotal role in the induction of insulin resistance. Therefore, we designed a study in which the expression of CerS1 and CerS5 genes responsible for the synthesis of C18:0-Cer and C16:0-Cer, respectively, was locally silenced in the gastrocnemius muscle of HFD-fed mice through in vivo electroporation-mediated shRNA plasmids. Our study indicates that HFD feeding induced both, the systemic and skeletal muscle insulin resistance, which was accompanied by an increase in the intramuscular lipid levels, decreased activation of the insulin pathway and, consequently, a decrease in the skeletal muscle glucose uptake. CerS1 silencing leads to a reduction in C18:0-Cer content, with a subsequent increase in the activity of the insulin pathway, and an improvement in skeletal muscle glucose uptake. Such effects were not visible in case of CerS5 silencing, which indicates that the accumulation of C18:0-Cer plays a decisive role in the induction of skeletal muscle insulin resistance.


Assuntos
Inativação Gênica , Glucose , Resistência à Insulina , Proteínas de Membrana , Músculo Esquelético , Esfingosina N-Aciltransferase , Animais , Masculino , Acil Coenzima A/metabolismo , Dieta Hiperlipídica , Diglicerídeos/metabolismo , Ácidos Graxos/sangue , Genes Reporter , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
12.
J Clin Med ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054078

RESUMO

We hypothesized that sphingolipids may be early biomarkers of gestational diabetes mellitus (GDM). Here, 520 women with normal fasting plasma glucose levels were recruited in the first trimester and tested with a 75 g oral glucose tolerance test in the 24th-28th week of pregnancy. Serum sphingolipids concentrations were measured in the first and the second trimester by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/MS/MS) in 53 patients who were diagnosed with GDM, as well as 82 pregnant women with normal glucose tolerance (NGT) and 32 non-pregnant women. In the first trimester, pregnant women showed higher concentrations of C16:0, C18:1, C22:0, C24:1, and C24:0-Cer and lower levels of sphinganine (SPA) and sphingosine-1-phosphate (S1P) compared to non-pregnant women. During pregnancy, we observed significant changes in C16:0, C18:0, C18:1, and C24:1-Cer levels in the GDM group and C18:1 and C24:0-Cer in NGT. The GDM (pre-conversion) and NGT groups in the first trimester differed solely in the levels of C18:1-Cer (AUC = 0.702 p = 0.008), also considering glycemia. Thus, C18:1-Cer revealed its potential as a GDM biomarker. Sphingolipids are known to be a modulator of insulin resistance, and our results indicate that ceramide measurements in early pregnancy may help with GDM screening.

13.
Front Endocrinol (Lausanne) ; 12: 778442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938272

RESUMO

Skeletal muscles play an essential role in whole-body glucose homeostasis. They are a key organ system engaged in the development of insulin resistance, and also a crucial tissue mediating the beneficial metabolic effects of physical activity. However, molecular mechanisms underlying both these processes in skeletal muscle remain unclear. The aim of our study was to compare metabolomic profiles in skeletal muscle of patients at different stages of dysglycemia, from normoglycemia through prediabetes to T2D, and its changes under a mixed-mode (strength and endurance) exercise intervention. We performed targeted metabolomics comprising several major metabolite classes, including amino acids, biogenic amines and lipid subgroups in skeletal muscles of male patients. Dysglycemic groups differed significantly at baseline in lysophosphatidylcholines, phosphatidylcholines, sphingomyelins, glutamine, ornithine, and carnosine. Following the exercise intervention, we detected significant changes in lipids and metabolites related to lipid metabolism, including in ceramides and acylcarnitines. With their larger and more significant change over the intervention and among dysglycemic groups, these findings suggest that lipid species may play a predominant role in both the pathogenesis of type 2 diabetes and its protection by exercise. Simultaneously, we demonstrated that amino acid metabolism, especially glutamate dysregulation, is correlated to the development of insulin resistance and parallels disturbances in lipid metabolites.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Estado Pré-Diabético/terapia , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Progressão da Doença , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Metaboloma , Metabolômica , Pessoa de Meia-Idade , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia
14.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299048

RESUMO

Adipose tissue (AT) is an endocrine organ involved in the management of energy metabolism via secretion of adipokines, hormones, and recently described secretory microvesicles, i.e., exosomes. Exosomes are rich in possible biologically active factors such as proteins, lipids, and RNA. The secretory function of adipose tissue is affected by pathological processes. One of the most important of these is obesity, which triggers adipose tissue inflammation and adversely affects the release of beneficial adipokines. Both processes may lead to further AT dysfunction, contributing to changes in whole-body metabolism and, subsequently, to insulin resistance. According to recent data, changes within the production, release, and content of exosomes produced by AT may be essential to understand the role of adipose tissue in the development of metabolic disorders. In this review, we summarize actual knowledge about the possible role of AT-derived exosomes in the development of insulin resistance, highlighting methodological challenges and potential gains resulting from exosome studies.


Assuntos
Tecido Adiposo/patologia , Exossomos/patologia , Intolerância à Glucose/patologia , Resistência à Insulina , Animais , Intolerância à Glucose/etiologia , Humanos
15.
Arch Med Sci ; 17(1): 53-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488856

RESUMO

INTRODUCTION: Due to the lack of highly specific and sensitive methods for diagnosing ovarian cancer at advanced stages (according to the International Federation of Gynecology and Obstetrics (FIGO) classification stage III-IV), new noninvasive biomarkers are urgently needed. This study aims to investigate how the levels of plasma bioactive sphingolipids (ceramides, sphingosine-1-phosphate, sphingosine and sphinganine) are altered in serum, erythrocytes and platelets of patients with advanced serous ovarian cancer. MATERIAL AND METHODS: A total of 135 patients with advanced serous ovarian cancer and 159 women with normal ovarian morphology were enrolled. Plasma levels of sphingosine, sphingosine-1-phosphate, sphinganine, ceramide C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer, C22:0-Cer, C24:1-Cer and C24:0-Cer were assessed by LC/MS/MS. RESULTS: Plasma concentrations of C16-Cer, C18:1-Cer and C18-Cer were significantly higher in the advanced ovarian cancer group than in the control group (1.5-fold, p = 0.021; 1.8-fold, p = 0.036 and 1.5-fold, p = 0.031, respectively). Plasma concentration of C18:1-Cer was significantly higher in erythrocytes of women with advanced serous cancer compared to the control group (p = 0.027). Plasma C16-Cer and C18:1-Cer levels and erythrocyte C18:1-Cer levels were able to distinguish patients with moderate/severe serous ovarian cancer from patients with mild ovarian cancer (AUC: 0.86, 0.898, 0.795, respectively). Plasma concentrations of C16, C18.1 and C18 significantly correlated with FIGO staging (p = 0.001, p = 0.024 and p = 0.005), and grading (p = 0.021, p = 0.021 and p = 0.033). CONCLUSIONS: Plasma concentrations of C16, C18.1 and C18 correlated with the progression of ovarian cancer (FIGO staging and grading). Plasma levels of C16-Cer and C18:1-Cer and erythrocyte C18:1-Cer levels could be used to distinguish patients with advanced serous ovarian cancer.

17.
BMC Surg ; 20(1): 323, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298009

RESUMO

BACKGROUND: The incidence of obesity has been constantly growing and bariatric procedures are considered to be the most effective treatment solution for morbidly obese patients. The results of laparoscopic sleeve gastrectomy (LSG) may differ depending on patient's age, gender, preoperative body mass index (BMI) and physical activity. METHODS: The aim of this study was to evaluate age-related differences in the outcome of LSG in terms of weight loss parameters, lipid and carbohydrate profile. The retrospective analysis of 555 patients who had undergone LSG was performed to compare the metabolic outcomes of surgery in individuals < 45 and ≥ 45 years old. Evaluation of weight loss parameters along with selected laboratory data was performed to demonstrate the results of LSG in 2 years follow-up. RESULTS: Overall, 238 males and 317 females (43%/57%) with median age of 43 years and median preoperative BMI of 46.41 (42.06-51.02) kg/m2 were analyzed. Patients in both groups presented significant weight loss at 24 months after the surgery with comparable percentage of total weight loss (40.95% in < 45 years old group and 40.44% in ≥ 45 years old group). The percentage of excess weight loss (78.52% vs. 74.53%) and percentage of excess BMI loss (91.95% vs. 88.01%) were higher in patients < 45 years old. However, the differences were not statistically significant (p = 0.662, p = 0.788 respectively). Patients under 45 years old experienced faster decrease in fasting glucose level that was observed after only 3 months (109 mg/dl to 95 mg/dl in < 45 years old group vs. 103.5 mg/dl to 99.5 mg/dl in ≥ 45 years old group, p < 0.001). Both groups presented improvement of lipid parameters during the observation. However, patients < 45 years old achieved lower values of LDL at 3 and 12 months follow-up (115 mg/dl vs. 126 mg/dl, p = 0.010; 114.8 mg/dl vs. 122 mg/dl, p = 0.002). Younger group of patients also showed superior improvement of triglycerides level. CONCLUSIONS: LSG results in significant weight loss in all patients regardless age. In turn, superior and faster improvement in lipid and carbohydrate profile is achieved in patients under 45 years old.


Assuntos
Bariatria/métodos , Gastrectomia/métodos , Laparoscopia/métodos , Obesidade Mórbida/cirurgia , Adulto , Fatores Etários , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Gastrectomia/efeitos adversos , Humanos , Laparoscopia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
18.
Biomolecules ; 10(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322719

RESUMO

High-fat diet consumption and lack of physical activity are important risk factors for metabolic disorders such as insulin resistance and cardiovascular diseases. Insulin resistance is a state of a weakened response of tissues such as skeletal muscle, adipose tissue, and liver to insulin, which causes an increase in blood glucose levels. This condition is the result of inhibition of the intracellular insulin signaling pathway. Skeletal muscle is an important insulin-sensitive tissue that accounts for about 80% of insulin-dependent glucose uptake. Although the exact mechanism by which insulin resistance is induced has not been thoroughly understood, it is known that insulin resistance is most commonly associated with obesity. Therefore, it is believed that lipids may play an important role in inducing insulin resistance. Among lipids, researchers' attention is mainly focused on biologically active lipids: diacylglycerols (DAG) and ceramides. These lipids are able to regulate the activity of intracellular enzymes, including those involved in insulin signaling. Available data indicate that physical activity affects lipid metabolism and has a positive effect on insulin sensitivity in skeletal muscles. In this review, we have presented the current state of knowledge about the impact of physical activity on insulin resistance and metabolism of biologically active lipids.


Assuntos
Exercício Físico , Resistência à Insulina , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Humanos , Insulina/metabolismo
19.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036203

RESUMO

Skeletal muscle is an important tissue responsible for glucose and lipid metabolism. High-fat diet (HFD) consumption is associated with the accumulation of bioactive lipids: long chain acyl-CoA, diacylglycerols (DAG) and ceramides. This leads to impaired insulin signaling in skeletal muscle. There is little data on the involvement of DAG in the development of these disorders. Therefore, to clarify this enigma, the gene encoding glycerol-3-phosphate acyltransferase enzyme (GPAT, responsible for DAG synthesis) was silenced through shRNA interference in the gastrocnemius muscle of animals with diet-induced insulin resistance. This work shows that HFD induces insulin resistance, which is accompanied by an increase in the concentration of plasma fatty acids and the level of bioactive lipids in muscle. The increase in these lipids inhibits the insulin pathway and reduces muscle glucose uptake. GPAT silencing through electroporation with shRNA plasmid leads to a reduction in DAG and triacylglycerol (TAG) content, an increase in the activity of the insulin pathway and glucose uptake without a significant effect on ceramide content. This work clearly shows that DAG accumulation has a significant effect on the induction of muscle insulin resistance and that inhibition of DAG synthesis through GPAT modulation may be a potential target in the treatment of insulin resistance.


Assuntos
Dieta Hiperlipídica , Inativação Gênica , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , RNA Interferente Pequeno/uso terapêutico , Acil Coenzima A/metabolismo , Animais , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Eletroporação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Plasmídeos
20.
Biomolecules ; 10(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708181

RESUMO

An altered ceramide composition in patients with inflammatory bowel disease (IBD) has been reported recently. The aim of this study was to evaluate the concentrations of sphingolipids in the serum of treatment-naive children with newly diagnosed IBD and to determine the diagnostic value of the tested lipids in pediatric IBD. The concentrations of sphingolipids in serum samples were evaluated using a quantitative method, an ultra-high-performance liquid chromatography-tandem mass spectrometry in children with Crohn's disease (CD) (n=34), ulcerative colitis (UC) (n = 39), and controls (Ctr) (n = 24). Among the study groups, the most significant differences in concentrations were noted for C16:0-LacCer, especially in children with CD compared to Ctr or even to UC. Additionally, the relevant increase in C20:0-Cer and C18:1-Cer concentrations were detected in both IBD groups compared to Ctr. The enhanced C24:0-Cer level was observed only in UC, while C18:0-Cer only in the CD group. The highest area under the curve (AUC), specificity, and sensitivity were determined for C16:0-LacCer in CD diagnosis. Our results suggest that the serum LacC16-Cer may be a potential biomarker that distinguishes children with IBD from healthy controls and differentiates IBD subtypes. In addition, C20:0-Cer and C18:0-Cer levels also seem to be closely connected with IBD.


Assuntos
Doenças Inflamatórias Intestinais/sangue , Lactosilceramidas/sangue , Esfingolipídeos/sangue , Adolescente , Área Sob a Curva , Biomarcadores/sangue , Criança , Pré-Escolar , Colite Ulcerativa/sangue , Colite Ulcerativa/diagnóstico , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Feminino , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...