Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 359: 109223, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004202

RESUMO

BACKGROUND: Cellular responses at the sub-acute phase of mild traumatic brain injury (mTBI), and their contribution to ongoing damage, are unclear, complex and require simultaneous assessment of multiple cells to elucidate. NEW METHOD: An 11-colour flow cytometry method for analysing brain cells was evaluated in a weight-drop rat model of repeated mTBI. Animals received sham, one, two or three mTBI delivered at 24 h intervals (n = 6/group). Cerebrum homogenates were prepared 11 days after first mTBI, in two cohorts of n = 3/group to enable same-day staining of fresh tissue. Percentages of neurons, astrocytes, microglia, mature oligodendrocytes and NeuN + CC1+ cells, neutrophils, macrophages and non-myeloid leukocytes, and their immunoreactivity for cell damage indicators (inducible nitric oxide synthase; iNOS, proliferating cell nuclear antigen; PCNA, 8-Oxo-2'-deoxyguanosine; 8OHDG and 4-hydroxynonenal; HNE), were assessed. RESULTS: Median fluorescence intensity (MFI) of iNOS in activated microglia increased following two, but not one or three, mTBI (p = 0.04). However, there were differences between processing cohorts in terms of percentages and MFI of some PCNA+, iNOS+, 8OHDG + and HNE + cell populations. COMPARISON WITH EXISTING METHODS: Previous applications of flow cytometry for rat brain analysis were typically limited to three or four markers. This method uses 11 markers to identify nine cell populations and evaluate their immunoreactivity to four metabolic indicators of cell damage. CONCLUSIONS: Flow cytometry can be useful for discerning injury-related changes in multiple rat brain cells. However, markers sensitive to subtle changes in experimental conditions must be identified in pilot experiments and subsequently analysed in the same tissue-processing cohort.


Assuntos
Concussão Encefálica , Animais , Encéfalo , Citometria de Fluxo , Microglia , Neurônios , Ratos
2.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384417

RESUMO

Following mild traumatic brain injury (mTBI), the ionic homeostasis of the central nervous system (CNS) becomes imbalanced. Excess Ca2+ influx into cells triggers molecular cascades, which result in detrimental effects. The authors assessed the effects of a combination of ion channel inhibitors (ICI) following repeated mTBI (rmTBI). Adult female rats were subjected to two rmTBI weight-drop injuries 24 h apart, sham procedures (sham), or no procedures (normal). Lomerizine, which inhibits voltage-gated calcium channels, was administered orally twice daily, whereas YM872 and Brilliant Blue G, inhibiting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and P2X7 receptors, respectively, were delivered intraperitoneally every 48 h post-injury. Vehicle treatment controls were included for rmTBI, sham, and normal groups. At 11 days following rmTBI, there was a significant increase in the time taken to cross the 3 cm beam, as a sub-analysis of neurological severity score (NSS) assessments, compared with the normal control (p < 0.05), and a significant decrease in learning-associated improvement in rmTBI in Morris water maze (MWM) trials relative to the sham (p < 0.05). ICI-treated rmTBI animals were not different to sham, normal controls, or rmTBI treated with vehicle in all neurological severity score and Morris water maze assessments (p > 0.05). rmTBI resulted in increases in microglial cell density, antioxidant responses (manganese-dependent superoxide dismutase (MnSOD) immunoreactivity), and alterations to node of Ranvier structure. ICI treatment decreased microglial density, MnSOD immunoreactivity, and abnormalities of the node of Ranvier compared with vehicle controls (p < 0.01). The authors' findings demonstrate the beneficial effects of the combinatorial ICI treatment on day 11 post-rmTBI, suggesting an attractive therapeutic strategy against the damage induced by excess Ca2+ following rmTBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Quimioterapia Combinada/métodos , Feminino , Ratos
3.
J Neuroinflammation ; 15(1): 201, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981582

RESUMO

BACKGROUND: Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. METHODS: Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. RESULTS: Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFα, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFα and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. CONCLUSIONS: Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region.


Assuntos
Barreira Hematoencefálica/patologia , Citocinas/metabolismo , Encefalite/etiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/patologia , Vias Visuais/patologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Encefalite/patologia , Feminino , Fibrinogênio/metabolismo , Lateralidade Funcional , Macrófagos/patologia , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nervo Óptico/patologia , Ratos , Fatores de Tempo , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...