Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834415

RESUMO

Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa. When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa, respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.


Assuntos
Anti-Infecciosos , Peptidomiméticos , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Peptidomiméticos/farmacologia , Gentamicinas/farmacologia , Staphylococcus aureus , Staphylococcus , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Pseudomonas aeruginosa , Bactérias , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 12(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508323

RESUMO

As bacteria continue to develop resistance mechanisms against antimicrobials, an alternative method to tackle this global concern must be developed. As the pqs system is the most well-known and responsible for biofilm and pyocyanin production, quinazolinone inhibitors of the pqs system in P. aeruginosa were developed. Molecular docking following a rationalised medicinal chemistry approach was adopted to design these analogues. An analysis of docking data suggested that compound 6b could bind with the key residues in the ligand binding domain of PqsR in a similar fashion to the known antagonist M64. The modification of cyclic groups at the 3-position of the quinazolinone core, the introduction of a halogen at the aromatic core and the modification of the terminal group with aromatic and aliphatic chains were investigated to guide the synthesis of a library of 16 quinazolinone analogues. All quinazolinone analogues were tested in vitro for pqs inhibition, with the most active compounds 6b and 6e being tested for biofilm and growth inhibition in P. aeruginosa (PAO1). Compound 6b displayed the highest pqs inhibitory activity (73.4%, 72.1% and 53.7% at 100, 50 and 25 µM, respectively) with no bacterial growth inhibition. However, compounds 6b and 6e only inhibited biofilm formation by 10% and 5%, respectively.

3.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978452

RESUMO

There is a pressing need to develop new antimicrobials to help combat the increase in antibiotic resistance that is occurring worldwide. In the current research, short amphiphilic antibacterial and antibiofilm agents were produced by tuning the hydrophobic and cationic groups of anthranilamide peptidomimetics. The attachment of a lysine cationic group at the tail position increased activity against E. coli by >16-fold (from >125 µM to 15.6 µM) and greatly reduced cytotoxicity against mammalian cells (from ≤20 µM to ≥150 µM). These compounds showed significant disruption of preformed biofilms of S. aureus at micromolar concentrations.

4.
Bioorg Chem ; 130: 106226, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332317

RESUMO

It is well established that the quorum sensing (QS) in Pseudomonas aeruginosa is primarily responsible for the synthesis and the release of several virulence factors including pyocyanin and are involved in biofilm formation. In the Pseudomonas quinolone signal (PQS) system, autoinducers such as PQS and HHQ bind and activate the transcription regulator protein receptor PqsR (MvfR). Targeting PqsR with competitive inhibitors could be a promising strategy to inhibit QS in P. aeruginosa to overcome antimicrobial resistance. In this study, we have designed and synthesized a series of novel quinazolinone disulfide-containing competitive inhibitor of PqsR. The most potent analogue 8q efficiently inhibited the pqs system with an IC50 value of 4.5 µM. It also showed complete suppression of pyocyanin production and a significant reduction in biofilm formation by P. aeruginosa (PAO1) with low cytotoxicity. Additionally, 8q produced synergy in combination with known antibiotics such as ciprofloxacin and tobramycin. Finally, molecular docking analysis suggested that compound 8q could bind with the ligand-binding domain of PqsR in a similar fashion to the native ligand.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/fisiologia , Piocianina , Ligantes , Simulação de Acoplamento Molecular , Quinazolinonas/farmacologia , Quinazolinonas/metabolismo , Dissulfetos/farmacologia , Biofilmes , Proteínas de Bactérias/metabolismo
5.
Molecules ; 29(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202749

RESUMO

A synthetic pathway to a novel 4-aryl-3,4-dihydro-2H-1,4-benzoxazine scaffold was developed and a series of compounds based on the scaffold were synthesised as potential anticancer agents. The 4-aryl-substituted compounds were prepared via Buchwald-Hartwig cross-coupling between substituted bromobenzenes and various 1,4-benzoxazines, which in turn were generated from a cascade hydrogenation and reductive amination one-pot reaction. These analogues exhibited moderate to good potency against various cancer cell lines. Structure-activity relationship analysis indicated that the inclusion of hydroxyl groups on ring A and ring B was beneficial to biological activity, while having a para-amino group on ring C significantly enhanced potency. Molecule 14f displayed the most potent anticancer activity (IC50 = 7.84-16.2 µM against PC-3, NHDF, MDA-MB-231, MIA PaCa-2, and U-87 MG cancer cell lines), indicating its potential as a lead compound for further structural optimisation. All the synthesised compounds were fully characterised with NMR, HMRS, and IR. The novel benzoxazine scaffold described in this study holds promise and deserves further in-depth studies.


Assuntos
Benzoxazinas , Bromobenzenos , Benzoxazinas/farmacologia , Hidrogenação , Aminação , Linhagem Celular
6.
Sci Rep ; 12(1): 22259, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564414

RESUMO

In this study, we prepared antibacterial hydrogels through the self-assembly of naphthyl anthranilamide (NaA) capped amino acid based cationic peptide mimics. These ultra-short cationic peptide mimics were rationally designed with NaA as a capping group, L-phenylalanine, a short aliphatic linker, and a cationic group. The synthesized peptide mimics efficiently formed hydrogels with minimum gel concentrations between 0.1 and 0.3%w/v. The resulting hydrogels exhibited desirable viscoelastic properties which can be tuned by varying the cationic group, electronegative substituent, or counter anion. Importantly, nanofibers from the NaA-capped cationic hydrogels were found to be the source of hydrogels' potent bacteriacidal actvity against both Gram-positive and Gram-negative bacteria while remaining non-cytotoxic. These intrinsically antibacterial hydrogels are ideal candidates for further development in applications where bacterial contamination is problematic.


Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Peptídeos/química , Cátions
7.
Antibiotics (Basel) ; 11(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36009943

RESUMO

Peptoids are peptidomimetics that have attracted considerable interest as a promising class of antimicrobials against multi-drug-resistant bacteria due to their resistance to proteolysis, bioavailability, and thermal stability compared to their corresponding peptides. Staphylococcus aureus is a significant contributor to infections worldwide and is a major pathogen in ocular infections (keratitis). S. aureus infections can be challenging to control and treat due to the development of multiple antibiotic resistance. This work describes short cationic peptoids with activity against S. aureus strains from keratitis. The peptoids were synthesized via acid amine-coupling between naphthyl-indole amine or naphthyl-phenyl amine with different amino acids to produce primary amines (series I), mono-guanidines (series II), tertiary amine salts (series III), quaternary ammonium salts (series IV), and di-guanidine (series V) peptoids. The antimicrobial activity of the peptoids was compared with ciprofloxacin, an antibiotic that is commonly used to treat keratitis. All new compounds were active against Staphylococcus aureus S.aureus 38. The most active compounds against S.aur38 were 20a and 22 with MIC = 3.9 µg mL−1 and 5.5 µg mL−1, respectively. The potency of these two active molecules was investigated against 12 S. aureus strains that were isolated from microbial keratitis. Compounds 20a and 22 were active against 12 strains with MIC = 3.2 µg mL−1 and 2.1 µg mL−1, respectively. There were two strains that were resistant to ciprofloxacin (Sa.111 and Sa.112) with MIC = 128 µg mL−1 and 256 µg mL−1, respectively. Compounds 12c and 13c were the most active against E. coli, with MIC > 12 µg mL−1. Cytoplasmic membrane permeability studies suggested that depolarization and disruption of the bacterial cell membrane could be a possible mechanism for antibacterial activity and the hemolysis studies toward horse red blood cells showed that the potent compounds are non-toxic at up to 50 µg mL−1.

8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563014

RESUMO

There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure-activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Ácido Cólico/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328373

RESUMO

The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics-antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.


Assuntos
Anti-Infecciosos , Peptidomiméticos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli , Indóis , Peptidomiméticos/farmacologia , Polímeros , Pseudomonas aeruginosa , Staphylococcus aureus
10.
Antibiotics (Basel) ; 11(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35203755

RESUMO

The Quorum-sensing system in Pseudomonas aeruginosa is responsible for the pathogenicity and the production of virulence factors and biofilm formation. Dihydropyrrolones were previously found to act as inhibitors of QS-dependent bacterial phenotypes. In this study, a range of dihydropyrrolone (DHP) analogues was synthesized via the lactone-lactam conversion of lactone intermediates followed by the formation of novel acetylene analogues of dihydropyrrolones from brominated dihydropyrrolones via Sonogashira coupling reactions in moderate to high yields. Upon biological testing, the most potent compounds, 39-40 and 44, showed higher bacterial quorum-sensing inhibitory (QSI) activity against P. aeruginosa reporter strain at 62.5 µM. Structure-activity relationship studies revealed that di-alkynyl substituent at the exocyclic position of DHPs possessed higher QSI activities than those of mono-alkynyl DHPs. Moreover, a hexyl-substituent at C3 of DHPs was beneficial to QSI activity while a phenyl substituent at C4 of DHPs was detrimental to QSI activity of analogues.

11.
Bioorg Chem ; 118: 105481, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801947

RESUMO

A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 µM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.


Assuntos
Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Bactérias Gram-Positivas/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mariposas , Relação Estrutura-Atividade
12.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641289

RESUMO

The dihydropyranoindole structures were previously identified as promising scaffolds for improving the anti-cancer activity of histone deacetylase inhibitors. This work describes the synthesis of related furoindoles and their ability to synergize with suberoylanilide hydroxamic acid (SAHA) against neuroblastoma and breast cancer cells. The nucleophilic substitution of hydroxyindole methyl esters with α-haloketones yielded the corresponding arylether ketones, which were subsequently cyclized to tricyclic and tetracyclic furoindoles. The furoindoles showed promising individual cytotoxic efficiency against breast cancer cells, as well as decent SAHA enhancement against cancer cells in select cases. Interestingly, the best IC50 value was obtained with the non-cyclized intermediate.


Assuntos
Neoplasias da Mama/enzimologia , Inibidores de Histona Desacetilases/farmacologia , Cetonas/síntese química , Neuroblastoma/enzimologia , Vorinostat/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Cetonas/química , Cetonas/farmacologia , Células MCF-7 , Neuroblastoma/tratamento farmacológico
13.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205355

RESUMO

Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.


Assuntos
Acetofenonas/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia
14.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298964

RESUMO

The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 µM (2.9 and 5.6 µg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 µM (8.5 µg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 µM. It also disrupted 44% of pre-established S. aureus biofilms at 32 µM and 28% of pre-established E. coli biofilms 64 µM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Peptidomiméticos , Staphylococcus aureus/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia
15.
Bioorg Med Chem ; 31: 115967, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434766

RESUMO

The Pseudomonas quinolone system (pqs) is one of the key quorum sensing systems in antibiotic-resistant P. aeruginosa and is responsible for the production of virulence factors and biofilm formation. Thus, synthetic small molecules that can target the PqsR (MvfR) receptor can be utilized as quorum sensing inhibitors to treat P. aeruginosa infections. In this study, we report the synthesis of novel thioether-linked dihydropyrrol-2-one (DHP) analogues as PqsR antagonists. Compound 7g containing a 2-mercaptopyridyl linkage effectively inhibited the pqs system with an IC50 of 32 µM in P. aeruginosa PAO1. Additionally, these inhibitors significantly reduced bacterial aggregation and biofilm formation without affecting planktonic growth. The molecular docking study suggest that these inhibitors bind with the ligand binding domain of the MvfR as a competitive antagonist.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pirróis/farmacologia , Sulfetos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirróis/química , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfetos/química
16.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947921

RESUMO

There has been an increasing interest in the development of antimicrobial peptides (AMPs) and their synthetic mimics as a novel class of antibiotics to overcome the rapid emergence of antibiotic resistance. Recently, phenylglyoxamide-based small molecular AMP mimics have been identified as potential leads to treat bacterial infections. In this study, a new series of biphenylglyoxamide-based small molecular AMP mimics were synthesised from the ring-opening reaction of N-sulfonylisatin bearing a biphenyl backbone with a diamine, followed by the conversion into tertiary ammonium chloride, quaternary ammonium iodide and guanidinium hydrochloride salts. Structure-activity relationship studies of the analogues identified the octanesulfonyl group as being essential for both Gram-positive and Gram-negative antibacterial activity, while the biphenyl backbone was important for Gram-negative antibacterial activity. The most potent analogue was identified to be chloro-substituted quaternary ammonium iodide salt 15c, which possesses antibacterial activity against both Gram-positive (MIC against Staphylococcus aureus = 8 µM) and Gram-negative bacteria (MIC against Escherichia coli = 16 µM, Pseudomonas aeruginosa = 63 µM) and disrupted 35% of pre-established S. aureus biofilms at 32 µM. Cytoplasmic membrane permeability and tethered bilayer lipid membranes (tBLMs) studies suggested that 15c acts as a bacterial membrane disruptor. In addition, in vitro toxicity studies showed that the potent compounds are non-toxic against human cells at therapeutic dosages.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptidomiméticos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/química , Linhagem Celular , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
17.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646050

RESUMO

The Pseudomonas quinolone system (PQS) is one of the three major interconnected quorum sensing signaling systems in Pseudomonas aeruginosa. The virulence factors PQS and HHQ activate the transcription regulator PqsR (MvfR), which controls several activities in bacteria, including biofilm formation and upregulation of PQS biosynthesis. The enzyme anthraniloyl-CoA synthetase (PqsA) catalyzes the first and critical step in the biosynthesis of quinolones; therefore, it is an attractive target for the development of anti-virulence therapeutics against Pseudomonas resistance. Herein, we report the design and synthesis of novel triazole nucleoside-based anthraniloyl- adenosine monophosphate (AMP) mimics. These analogues had a major impact on the morphology of bacterial biofilms and caused significant reduction in bacterial aggregation and population density. However, the compounds showed only limited inhibition of PQS and did not exhibit any effect on pyocyanin production.


Assuntos
Monofosfato de Adenosina , Materiais Biomiméticos/farmacologia , Pseudomonas aeruginosa , Quinolonas/metabolismo , Fatores de Virulência/biossíntese , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Fatores de Transcrição/metabolismo
18.
Molecules ; 25(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197360

RESUMO

The dihydropyranoindole scaffold was identified as a promising target for improving the anti-cancer activity of HDAC inhibitors from the preliminary screening of a library of compounds. A suitable methodology has been developed for the preparation of novel dihydropyranoindoles via the Hemetsberger indole synthesis using azido-phenylacrylates, derived from the reaction of corresponding alkynyl-benzaldehydes with methyl azidoacetate, followed by thermal cyclization in high boiling solvents. Anti-cancer activity of all the newly synthesized compounds was evaluated against the SH-SY5Y and Kelly neuroblastoma cells as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Biological studies showed that the tetracyclic systems had significant cytotoxic activity at higher concentration against the neuroblastoma cancer cells. More importantly, these systems, at the lower concentration, considerably enhanced the SAHA toxicity. In addition to that, the toxicity of designated systems on the healthy human cells was found to be significantly less than the cancer cells.


Assuntos
Antineoplásicos , Desenho de Fármacos , Inibidores de Histona Desacetilases , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Estrutura Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Relação Estrutura-Atividade
19.
Sci Rep ; 10(1): 770, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964927

RESUMO

In this study, we describe the synthesis and molecular properties of anthranilamide-based short peptides which were synthesised via ring opening of isatoic anhydride in excellent yields. These short peptides were incorporated as low molecular weight gelators (LMWG), bola amphiphile, and C3-symmetric molecules to form hydrogels in low concentrations (0.07-0.30% (w/v)). The critical gel concentration (CGC), viscoelastic properties, secondary structure, and fibre morphology of these short peptides were influenced by the aromaticity of the capping group or by the presence of electronegative substituent (namely fluoro) and hydrophobic substituent (such as methyl) in the short peptides. In addition, the hydrogels showed antibacterial activity against S. aureus 38 and moderate toxicity against HEK cells in vitro.


Assuntos
Antibacterianos/síntese química , Peptídeos/síntese química , Staphylococcus aureus/efeitos dos fármacos , ortoaminobenzoatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Células HEK293 , Humanos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peso Molecular , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Staphylococcus aureus/crescimento & desenvolvimento , Viscosidade
20.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783706

RESUMO

The bis-glyoxylamide peptidomimetics have been synthesized from bis-N-acetylisatins linked at C5 by ring-opening with alcohols, amines, and amino acid methyl ester hydrochlorides. X-ray images of single crystals of bis-glyoxylamide peptidomimetics have been obtained.


Assuntos
Indóis/síntese química , Peptidomiméticos/síntese química , Álcoois/química , Aminas/química , Aminoácidos/química , Ésteres/química , Indóis/química , Isatina/química , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Peptidomiméticos/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...