Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(23): 8671-8688, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991987

RESUMO

Benchmark results are presented for the second-order approximation of the internally contracted multireference coupled-cluster method with single and double excitations, icMRCC2 [Köhn, Bargholz, J. Chem. Phys. 2019, 151, 041106], which was designed as a multireference analogue of the single-reference second-order approximate coupled-cluster method CC2 [Christiansen, Koch, Jørgensen, Chem. Phys. Lett. 1995, 243, 409-418]. Vertical excitation energies of various small to medium-sized organic molecules are investigated based on established test sets from the literature. Additionally, the spectroscopic constants of ground and excited states of diatomics and the geometric parameters of excited triatomic molecules were determined and compared to the experimental data. The results show that the method clearly extends the applicability of single-reference CC2, including doubly excited states, and also artifacts of CC2 like too low Rydberg excitations and too weak multiple bonds are eliminated. The method is computationally more demanding than standard multireference second-order perturbation theories but improves significantly in accuracy, as shown by the benchmark results. In addition, it is demonstrated that small active spaces are often sufficient to obtain accurate energies with icMRCC2. Example applications like the automerization of cyclobutadiene, the deactivation pathway of ethylene, and the excited states of an iron complex with a noninnocent nitrosyl ligand demonstrate the potential of icMRCC2 in cases with strong multireference character.

2.
J Chem Phys ; 158(13): 134801, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031106

RESUMO

A new implementation of the internally contracted multireference coupled-cluster with singles and doubles (icMRCCSD) method is presented. The new code employs an efficient tensor contraction kernel and can also avoid full four-external integral transformations, which significantly extends the scope of the applicability of icMRCCSD. The new implementation is currently restricted to the simple case of two active electrons in two orbitals and also supports the computation of spin-adapted doublet and triplet coupled-cluster wavefunctions. This contribution describes the basic approach for the automated derivation of working equations and benchmarks the current code against efficient implementations of standard methods, such as single-reference coupled-cluster singles and doubles (CCSD) and internally contracted multireference configuration interaction (icMRCI). Run times for linearized variants of icMRCCSD are only twice as long as comparable CCSD runs and similar to those of the icMRCI implementation, while non-linear terms of more complete variants of icMRCCSD lead to an order of magnitude longer computation times. Nevertheless, the new code allows for computations at larger scales than it was possible previously, with less demands on memory and disk-space resources. This is exemplified by numerical structure optimizations and harmonic force field determinations of NC2H5 isomers and the singlet and triplet states of m-benzyne. In addition, the exchange coupling of a dinuclear copper complex is determined. This work also defines a new commutator approximation for icMRCCSD, which includes all terms that are also present in the single-reference CCSD method, thus yielding a consistent pair of single-reference and multireference coupled-cluster methods.

3.
J Chem Phys ; 152(14): 144107, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295355

RESUMO

Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.

4.
J Chem Phys ; 150(19): 194107, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117768

RESUMO

Linear and quadratic approximations to the internally contracted multireference coupled-cluster (icMRCC) method are implemented and analyzed by using the linked and unlinked coupled-cluster formalisms. This includes methods based on perturbation theory as well as the coupled-electron pair approximation, CEPA(0). The similarities and differences between all the approximations serve to highlight and provoke discussion about methodological peculiarities of the icMRCC ansatz. When calculating potential energy curves (PECs), discontinuities are observed for the linear icMRCC energies. Using a diagrammatic representation, the terms that cause but also reduce these discontinuities are identified. For benchmarking test cases such as calculating PECs, singlet-triplet splittings, and barrier heights, the multireference CEPA(0) approximation performs well; however, it suffers from a lack of size consistency and so cannot represent a step forward to the goal of developing a computationally cheap and accurate icMRCC method.

5.
J Phys Chem A ; 123(1): 218-229, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30507197

RESUMO

High-level ab initio calculations (DF-LCCSD(T)-F12a//B3LYP/aug-cc-pVTZ) are performed on a range of stabilized Criegee intermediate (sCI)-alcohol reactions, computing reaction coordinate energies, leading to the formation of α-alkoxyalkyl hydroperoxides (AAAHs). These potential energy surfaces are used to model bimolecular reaction kinetics over a range of temperatures. The calculations performed in this work reproduce the complicated temperature-dependent reaction rates of CH2OO and (CH3)2COO with methanol, which have previously been experimentally determined. This methodology is then extended to compute reaction rates of 22 different Criegee intermediates with methanol, including several intermediates derived from isoprene ozonolysis. In some cases, sCI-alcohol reaction rates approach those of sCI-(H2O)2. This suggests that in regions with elevated alcohol concentrations, such as urban Brazil, these reactions may generate significant quantities of AAAHs and may begin to compete with sCI reactions with other trace tropospheric pollutants such as SO2. This work also demonstrates the ability of alcohols to catalyze the 1,4-H transfer unimolecular decomposition of α-methyl substituted sCIs.

6.
J Chem Phys ; 148(19): 194102, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307255

RESUMO

Quasi-variational coupled-cluster methods are applied to a selection of diatomic molecules. The potential energy curves, spectroscopic constants, and size consistency errors are calculated and compared to those obtained from both single- and multi-reference methods. The effects of connected triple excitations are introduced with either the standard perturbative (T) formulation, or in the renormalised form, and its symmetrised approximation. It is found that the renormalised ansatz is significantly superior to the standard formulation when describing bond breaking and that in most circumstances, the computationally simpler symmetrisation gives nearly identical results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...