Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Am J Hum Genet ; 111(1): 133-149, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181730

RESUMO

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Fenótipo
2.
Sci Rep ; 13(1): 17680, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848499

RESUMO

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Assuntos
Aterosclerose , Epigênese Genética , Humanos , Epigenoma , Fator de Crescimento Transformador beta3/genética , Medicina de Precisão , Estudo de Associação Genômica Ampla , Metilação de DNA , Ilhas de CpG/genética , Aterosclerose/genética
3.
J Am Heart Assoc ; 12(20): e029090, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804200

RESUMO

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). P<0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04-1.12; P<0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (ß=0.091; P=0.11) or in the reverse direction (ß=-0.012; P=0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (ß=-0.084; P<0.001), but the reverse direction was not significant (P=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (P=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (ß=-0.092; P<0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus , Hipertensão , Humanos , DNA Mitocondrial/genética , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Variações do Número de Cópias de DNA , Estudos Transversais , Doença das Coronárias/genética , HDL-Colesterol , Hipertensão/epidemiologia , Hipertensão/genética , Obesidade
4.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868038

RESUMO

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

5.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662416

RESUMO

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies (PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene expression prediction models trained on samples from peripheral blood mononuclear cells (PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found that although PWAS and TWAS can show different directions of associations in an individual gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-values across all the genes, which suggests a high-level consistency between proteome-lipid associations and transcriptome-lipid associations.

6.
Cell Genom ; 3(8): 100359, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601969

RESUMO

Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets.

7.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425716

RESUMO

Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, while context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell type proportions, we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL effects. The interpretation of age iQTLs, however, warrants caution as the moderation effect of age on the genotype and molecular phenotype association may be mediated by changes in cell type composition. Finally, we show that cell type iQTLs contribute to cell type-specific enrichment of diseases that, in combination with additional functional data, may guide future functional studies. Overall, this study highlights iQTLs to gain insights into the context-specificity of regulatory effects.

8.
Int J Obes (Lond) ; 47(2): 109-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463326

RESUMO

BACKGROUND/OBJECTIVES: Obesity, defined as excessive fat accumulation that represents a health risk, is increasing in adults and children, reaching global epidemic proportions. Body mass index (BMI) correlates with body fat and future health risk, yet differs in prediction by fat distribution, across populations and by age. Nonetheless, few genetic studies of BMI have been conducted in ancestrally diverse populations. Gene expression association with BMI was assessed in the Multi-Ethnic Study of Atherosclerosis (MESA) in four self-identified race and ethnicity (SIRE) groups to identify genes associated with obesity. SUBJECTS/METHODS: RNA-sequencing was performed on 1096 MESA participants (37.8% white, 24.3% Hispanic, 28.4% African American, and 9.5% Chinese American) and linear models were used to assess the association of expression from each gene for its effect on BMI, adjusting for age, sex, sequencing center, study site, five expression and four genetic principal components in each self-identified race group. Sample-size-weighted meta-analysis was performed to identify genes with BMI-associated expression across ancestry groups. RESULTS: Within individual SIRE groups, there were zero to three genes whose expression is significantly (p < 1.97 × 10-6) associated with BMI. Across all groups, 45 genes were identified by meta-analysis whose expression was significantly associated with BMI, explaining 29.7% of BMI variation. The 45 genes are expressed in a variety of tissues and cell types and are enriched for obesity-related processes including erythrocyte function, oxygen binding and transport, and JAK-STAT signaling. CONCLUSIONS: We have identified genes whose expression is significantly associated with obesity in a multi-ethnic cohort. We have identified novel genes associated with BMI as well as confirmed previously identified genes from earlier genetic analyses. These novel genes and their biological pathways represent new targets for understanding the biology of obesity as well as new therapeutic intervention to reduce obesity and improve global public health.


Assuntos
Índice de Massa Corporal , Expressão Gênica , Obesidade , Adulto , Criança , Humanos , Aterosclerose , Obesidade/epidemiologia , Obesidade/genética
9.
Nat Commun ; 13(1): 7592, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481753

RESUMO

Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.


Assuntos
Células Sanguíneas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma
10.
Nat Methods ; 19(12): 1599-1611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303018

RESUMO

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Fenótipo , Variação Genética
11.
Am J Hum Genet ; 109(6): 1175-1181, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504290

RESUMO

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Povo Asiático , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
12.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385311

RESUMO

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

13.
Circulation ; 145(20): 1524-1533, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389749

RESUMO

BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do QT Longo , Eletrocardiografia , Heterozigoto , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Herança Multifatorial , Sequenciamento Completo do Genoma
14.
Hum Mol Genet ; 31(3): 347-361, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34553764

RESUMO

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Estados Unidos
15.
Science ; 374(6574): abg8871, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914532

RESUMO

We introduce Giraffe, a pangenome short-read mapper that can efficiently map to a collection of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands of human genomes at a speed comparable to that of standard methods mapping to a single reference genome. The increased mapping accuracy enables downstream improvements in genome-wide genotyping pipelines for both small variants and larger structural variants. We used Giraffe to genotype 167,000 structural variants, discovered in long-read studies, in 5202 diverse human genomes that were sequenced using short reads. We conclude that pangenomics facilitates a more comprehensive characterization of variation and, as a result, has the potential to improve many genomic analyses.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Técnicas de Genotipagem , Algoritmos , Alelos , Biologia Computacional , Genoma Fúngico , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
16.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582791

RESUMO

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Assuntos
Asma/epidemiologia , Biomarcadores/metabolismo , Dermatite Atópica/epidemiologia , Leucócitos/patologia , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Locos de Características Quantitativas , Asma/genética , Asma/metabolismo , Asma/patologia , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
17.
Mitochondrion ; 60: 33-42, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303007

RESUMO

We investigated the concordance of mitochondrial DNA heteroplasmic mutations (heteroplasmies) in 6745 maternal pairs of European (EA, n = 4718 pairs) and African (AA, n = 2027 pairs) Americans in whole blood. Mother-offspring pairs displayed the highest concordance rate, followed by sibling-sibling and more distantly-related maternal pairs. The allele fractions of concordant heteroplasmies exhibited high correlation (R2 = 0.8) between paired individuals. Discordant heteroplasmies were more likely to be in coding regions, be nonsynonymous or nonsynonymous-deleterious (p < 0.001). The number of deleterious heteroplasmies was significantly correlated with advancing age (20-44, 45-64, and ≥65 years, p-trend = 0.01). One standard deviation increase in heteroplasmic burden (i.e., the number of heteroplasmies carried by an individual) was associated with 0.17 to 0.26 (p < 1e - 23) standard deviation decrease in mtDNA copy number, independent of age. White blood cell count and differential count jointly explained 0.5% to 1.3% (p ≤ 0.001) variance in heteroplasmic burden. A genome-wide association and meta-analysis identified a region at 11p11.12 (top signal rs779031139, p = 2.0e - 18, minor allele frequency = 0.38) associated with the heteroplasmic burden. However, the 11p11.12 region is adjacent to a nuclear mitochondrial DNA (NUMT) corresponding to a 542 bp area of the D-loop. This region was no longer significant after excluding heteroplasmies within the 542 bp from the heteroplasmic burden. The discovery that blood mtDNA heteroplasmies were both inherited and somatic origins and that an increase in heteroplasmic burden was strongly associated with a decrease in average number of mtDNA copy number in blood are important findings to be considered in association studies of mtDNA with disease traits.


Assuntos
População Negra/genética , DNA Mitocondrial/genética , Heteroplasmia , Mitocôndrias/genética , População Branca/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação , Sequenciamento Completo do Genoma
19.
Am J Hum Genet ; 108(5): 874-893, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887194

RESUMO

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/patologia , Estudo de Associação Genômica Ampla , National Heart, Lung, and Blood Institute (U.S.)/organização & administração , Fenótipo , Adulto , Idoso , Cromossomos Humanos Par 16/genética , Conjuntos de Dados como Assunto , Feminino , Edição de Genes , Variação Genética/genética , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Qualidade , Reprodutibilidade dos Testes , Estados Unidos
20.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33720349

RESUMO

Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in data sets composed of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE testing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for population structure and genotype uncertainty, and to evaluate the impact of population heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods using simulated and real sequence data sets. Our results demonstrate that ignoring population structure or genotype uncertainty in HWE tests can inflate false-positive rates by many orders of magnitude. Our evaluations demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently among the best across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth.


Assuntos
Frequência do Gene/genética , Genética Populacional/métodos , Desequilíbrio de Ligação/genética , Alelos , Genótipo , Humanos , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...