Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1061-1078, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198226

RESUMO

Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-µM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.


Assuntos
Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Piridinas/química , Piridinas/farmacologia
2.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917420

RESUMO

Histone demethylases are epigenetic modulators that play key roles in regulating gene expression related to many critical cellular functions and are emerging as promising therapeutic targets in a number of tumor types. We previously identified histone demethylase family members as overexpressed in the pediatric sarcoma, rhabdomyosarcoma. Here we show high sensitivity of rhabdomyosarcoma cells to a pan-histone demethylase inhibitor, JIB-04 and identify a key role for the histone demethylase KDM4B in rhabdomyosarcoma cell growth through an RNAi-screening approach. Decreasing KDM4B levels affected cell cycle progression and transcription of G1/S and G2/M checkpoint genes including CDK6 and CCNA2, which are bound by KDM4B in their promoter regions. However, after sustained knockdown of KDM4B, rhabdomyosarcoma cell growth recovered. We show that this can be attributed to acquired molecular compensation via recruitment of KDM4A to the promoter regions of CDK6 and CCNA2 that are otherwise bound by KDM4B. Furthermore, upfront silencing of both KDM4B and KDM4A led to RMS cell apoptosis, not seen by reducing either alone. To circumvent compensation and elicit stronger therapeutic responses, our study supports targeting histone demethylase sub-family proteins through selective poly-pharmacology as a therapeutic approach.

3.
F S Sci ; 2(4): 383-395, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35559861

RESUMO

OBJECTIVE: To identify, in myometrial stem/progenitor cells, the presumptive cell of origin for uterine fibroids, substrates of Mediator-associated cyclin dependent kinase 8/19 (CDK8/19), which is known to be disrupted by uterine fibroid driver mutations in Mediator complex subunit 12 (MED12). DESIGN: Experimental study. SETTING: Academic research laboratory. PATIENT(S): Women undergoing hysterectomy for uterine fibroids. INTERVENTION(S): Stable isotopic labeling of amino acids in cell culture (SILAC) coupled with chemical inhibition of CDK8/19 and downstream quantitative phosphoproteomics and transcriptomic analyses in myometrial stem/progenitor cells. MAIN OUTCOME MEASURE(S): High-confidence Mediator kinase substrates identified by SILAC-based quantitative phosphoproteomics were determined using an empirical Bayes analysis and validated orthogonally by in vitro kinase assay featuring reconstituted Mediator kinase modules comprising wild-type or G44D mutant MED12 corresponding to the most frequent uterine fibroid driver mutation in MED12. Mediator kinase-regulated transcripts identified by RNA sequencing were linked to Mediator kinase substrates by computational analyses. RESULT(S): A total of 296 unique phosphosites in 166 proteins were significantly decreased (≥ twofold) upon CDK8/19 inhibition, including 118 phosphosites in 71 nuclear proteins representing high-confidence Mediator kinase substrates linked to RNA polymerase II transcription, RNA processing and transport, chromatin modification, cytoskeletal architecture, and DNA replication and repair. Orthogonal validation confirmed a subset of these proteins, including Cut Like Homeobox 1 (CUX1) and Forkhead Box K1 (FOXK1), to be direct targets of MED12-dependent CDK8 phosphorylation in a manner abrogated by the most common uterine fibroid driver mutation (G44D) in MED12, implicating these substrates in disease pathogenesis. Transcriptome-wide profiling of Mediator kinase-inhibited myometrial stem/progenitor cells revealed alterations in cell cycle and myogenic gene expression programs to which Mediator kinase substrates could be linked directly. Among these, CUX1 is an established transcriptional regulator of the cell cycle whose corresponding gene on chromosome 7q is the locus for a recurrent breakpoint in uterine fibroids, linking MED12 and Mediator kinase with CUX1 for the first time in uterine fibroid pathogenesis. FOXK1, a transcriptional regulator of myogenic stem cell fate, was found to be coordinately enriched along with kinase, but not core, Mediator subunits in myometrial stem/progenitor cells compared with differentiated uterine smooth muscle cells. CONCLUSION(S): These studies identify a new catalog of pathologically and biologically relevant Mediator kinase substrates implicated in the pathogenesis of MED12 mutation-positive uterine fibroids, and further uncover a biochemical basis to link Mediator kinase activity with CUX1 and FOXK1 in the regulation of myometrial stem/progenitor cell fate.


Assuntos
Leiomioma , Complexo Mediador , Teorema de Bayes , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Leiomioma/genética , Complexo Mediador/genética , Miométrio/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
4.
J Clin Invest ; 130(11): 5875-5892, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016930

RESUMO

The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.


Assuntos
Adenosina/análogos & derivados , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/biossíntese , Neuroblastoma/tratamento farmacológico , Temozolomida/farmacologia , Adenosina/farmacologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Blood Adv ; 4(7): 1478-1491, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32282883

RESUMO

Internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML); it causes constitutive activation of FLT3 kinase and is associated with high relapse rates and poor survival. Small-molecule inhibition of FLT3 represents an attractive therapeutic strategy for this subtype of AML, although resistance from secondary FLT3 tyrosine kinase domain (FLT3-TKD) mutations is an emerging clinical problem. CCT241736 is an orally bioavailable, selective, and potent dual inhibitor of FLT3 and Aurora kinases. FLT3-ITD+ cells with secondary FLT3-TKD mutations have high in vitro relative resistance to the FLT3 inhibitors quizartinib and sorafenib, but not to CCT241736. The mechanism of action of CCT241736 results in significant in vivo efficacy, with inhibition of tumor growth observed in efficacy studies in FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models. The efficacy of CCT241736 was also confirmed in primary samples from AML patients, including those with quizartinib-resistant disease, which induces apoptosis through inhibition of both FLT3 and Aurora kinases. The unique combination of CCT241736 properties based on robust potency, dual selectivity, and significant in vivo activity indicate that CCT241736 is a bona fide clinical drug candidate for FLT3-ITD and TKD AML patients with resistance to current drugs.


Assuntos
Leucemia Mieloide Aguda , Compostos de Fenilureia , Aurora Quinases , Benzotiazóis , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética
6.
Mol Cancer Ther ; 18(10): 1696-1707, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31575759

RESUMO

BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel.


Assuntos
Pontos de Checagem do Ciclo Celular , Pirimidinas/farmacologia , Fuso Acromático/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Disponibilidade Biológica , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos Humanos/genética , Sinergismo Farmacológico , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/química , Fuso Acromático/efeitos dos fármacos , Triazóis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Pediatr Blood Cancer ; 66(9): e27888, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207107

RESUMO

BACKGROUND: Ewing sarcoma and desmoplastic small round cell tumors (DSRCT) are rare and clinically aggressive sarcomas usually characterized by oncogenic fusion proteins involving EWS. Emerging studies of Ewing sarcoma have demonstrated EWS-FLI1-driven chromatin remodeling as a key aspect of tumorigenicity. In particular, the lysine-specific demethylase KDM1A/LSD1 is linked to transcriptional regulation of target genes orchestrated by the EWS portion of the fusion protein interacting with repressive chromatin-remodeling complexes. Consistent with this model, depletion of KDM1A supports it is a molecular therapeutic target in Ewing sarcoma cells, but effective drugs need to be identified. PROCEDURE: A comprehensive phenotypic analysis of the effects of catalytic KDM1A inhibitors ORY-1001 and GSK2879552, including clinically relevant doses, was carried out in 2D and 3D spheroid models of Ewing sarcoma and DSRCT. RESULTS: Catalytic inhibition of KDM1A did not affect cell viability in 2D and 3D assays and had no impact on invasion in a 3D assay. CONCLUSIONS: Overall, evidence presented here does not support inhibition of KDM1A catalytic demethylase activity as an effective therapeutic strategy for Ewing sarcoma or DSRCT. However, roles of KDM1A beyond its demethylase activity should be considered for these sarcomas.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Inibidores Enzimáticos , Histona Desmetilases/antagonistas & inibidores , Sarcoma de Ewing , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/metabolismo , Humanos , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/enzimologia
8.
Eur J Med Chem ; 177: 316-337, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158747

RESUMO

Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including 19a (KDM4A and KDM5B Ki = 0.004 and 0.007 µM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggests that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one compounds to achieve sub-micromolar target inhibition in cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinonas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estrutura Molecular , Ligação Proteica , Piridinas/síntese química , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/metabolismo , Relação Estrutura-Atividade
9.
Chem Sci ; 10(14): 4069-4076, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015948

RESUMO

Structure-based drug design is commonly used to guide the development of potent and specific enzyme inhibitors. Many enzymes - such as protein kinases - adopt multiple conformations, and conformational interconversion is expected to impact on the design of small molecule inhibitors. We measured the dynamic equilibrium between DFG-in-like active and DFG-out-like inactive conformations of the activation loop of unphosphorylated Aurora-A alone, in the presence of the activator TPX2, and in the presence of kinase inhibitors. The unphosphorylated kinase had a shorter residence time of the activation loop in the active conformation and a shift in the position of equilibrium towards the inactive conformation compared with phosphorylated kinase for all conditions measured. Ligand binding was associated with a change in the position of conformational equilibrium which was specific to each ligand and independent of the kinase phosphorylation state. As a consequence of this, the ability of a ligand to discriminate between active and inactive activation loop conformations was also independent of phosphorylation. Importantly, we discovered that the presence of multiple enzyme conformations can lead to a plateau in the overall ligand K d, despite increasing affinity for the chosen target conformation, and modelled the conformational discrimination necessary for a conformation-promoting ligand.

10.
Eur J Pharm Sci ; 139: 104899, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30953752

RESUMO

CCT241736 is a dual fms-like tyrosine kinase 3 (FLT3)/Aurora kinase inhibitor in development for the treatment of acute myeloid leukaemia. The successful development of any new drug relies on adequate safety testing including preclinical toxicology studies. Selection of an appropriate preclinical species requires a thorough understanding of the compound's metabolic clearance and pathways, as well as other pharmacokinetic and pharmacodynamic considerations. In addition, elucidation of the metabolising enzymes in human facilitates improved clinical prediction based on population pharmacokinetics and can inform drug-drug interaction studies. Intrinsic clearance (CLint) determination and metabolite profiling of CCT241736 in human and four preclinical species (dog, minipig, rat and mouse) was undertaken in cryopreserved hepatocytes and liver microsomes. Recombinant human cytochrome P450 bactosomes (rCYP) were utilised to provide reaction phenotyping data and support prediction of metabolic pathways. CCT241736 exhibited low CLint in both hepatocytes and liver microsomes of human, dog, minipig and rat, but considerably higher CLint in mouse. CYP3A4 and CYP3A5 were identified as the major enzymes responsible for biotransformation of CCT241736 in human, exclusively forming five out of seven metabolites. Minipig showed greatest similarity to human with regard to both overall metabolic profile and abundance of specific metabolites relative to parent compound, and is therefore proposed as the most appropriate toxicological species. The greatest disparity was observed between human and dog. Based on metabolic profile, either mouse or rat is a suitable rodent species for toxicology studies.


Assuntos
Aurora Quinases/antagonistas & inibidores , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Microssomos Hepáticos/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Especificidade da Espécie , Suínos , Porco Miniatura , Testes de Toxicidade
11.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905399

RESUMO

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Deficiências do Desenvolvimento/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Encéfalo/anormalidades , Criança , Pré-Escolar , Ciclina C/genética , Quinases Ciclina-Dependentes/genética , Exoma , Feminino , Cardiopatias Congênitas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Fenótipo , Fosforilação , Síndrome
12.
Nat Med ; 25(2): 292-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664779

RESUMO

Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.


Assuntos
Cordoma/metabolismo , Proteínas Fetais/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/efeitos dos fármacos , Cordoma/genética , Cordoma/patologia , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Genes Essenciais , Humanos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
13.
Angew Chem Int Ed Engl ; 58(2): 515-519, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30431220

RESUMO

Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.

14.
J Med Chem ; 61(18): 8226-8240, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30199249

RESUMO

Monopolar spindle 1 (MPS1) occupies a central role in mitosis and is one of the main components of the spindle assembly checkpoint. The MPS1 kinase is an attractive cancer target, and herein, we report the discovery of the clinical candidate BOS172722. The starting point for our work was a series of pyrido[3,4- d]pyrimidine inhibitors that demonstrated excellent potency and kinase selectivity but suffered from rapid turnover in human liver microsomes (HLM). Optimizing HLM stability proved challenging since it was not possible to identify a consistent site of metabolism and lowering lipophilicity proved unsuccessful. Key to overcoming this problem was the finding that introduction of a methyl group at the 6-position of the pyrido[3,4- d]pyrimidine core significantly improved HLM stability. Met ID studies suggested that the methyl group suppressed metabolism at the distant aniline portion of the molecule, likely by blocking the preferred pharmacophore through which P450 recognized the compound. This work ultimately led to the discovery of BOS172722 as a Phase 1 clinical candidate.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ensaios Clínicos Fase I como Assunto , Feminino , Humanos , Masculino , Metilação , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual , Triazóis/farmacocinética
15.
Cell Chem Biol ; 25(11): 1359-1371.e2, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30146241

RESUMO

The emergence of mutations that confer resistance to molecularly targeted therapeutics is dependent upon the effect of each mutation on drug affinity for the target protein, the clonal fitness of cells harboring the mutation, and the probability that each variant can be generated by DNA codon base mutation. We present a computational workflow that combines these three factors to identify mutations likely to arise upon drug treatment in a particular tumor type. The Osprey-based workflow is validated using a comprehensive dataset of ERK2 mutations and is applied to small-molecule drugs and/or therapeutic antibodies targeting KIT, EGFR, Abl, and ALK. We identify major clinically observed drug-resistant mutations for drug-target pairs and highlight the potential to prospectively identify probable drug resistance mutations.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Software , Fluxo de Trabalho
16.
ACS Chem Biol ; 13(9): 2427-2432, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30130388

RESUMO

APOBEC3B (A3B) deamination activity on ssDNA is considered a contributing factor to tumor heterogeneity and drug resistance in a number of human cancers. Despite its clinical impact, little is known about A3B ssDNA substrate preference. We have used nuclear magnetic resonance to monitor the catalytic turnover of A3B substrates in real-time. This study reports preferred nucleotide sequences for A3B substrates, including optimized 4-mer oligonucleotides, and reveals a breadth of substrate recognition that includes DNA sequences known to be mutated in drug-resistant cancer clones. Our results are consistent with available clinical and structural data and may inform the design of substrate-based A3B inhibitors.


Assuntos
Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Nucleotídeos/metabolismo , Citidina Desaminase/química , DNA de Cadeia Simples/química , Humanos , Antígenos de Histocompatibilidade Menor/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/química , Especificidade por Substrato
17.
Elife ; 72018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29676732

RESUMO

Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.


Assuntos
Sondas Moleculares/metabolismo , Farmacologia/métodos , Proteínas/metabolismo , Tecnologia Farmacêutica/métodos
18.
ACS Med Chem Lett ; 9(12): 1199-1204, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613326

RESUMO

Polypharmacology is often a key contributor to the efficacy of a drug, but is also a potential risk. We investigated two hits discovered via a cell-based phenotypic screen, the CDK9 inhibitor CCT250006 (1) and the pirin ligand CCT245232 (2), to establish methodology to elucidate their secondary protein targets. Using computational pocket-based analysis, we discovered intrafamily polypharmacology for our kinase inhibitor, despite little overall sequence identity. The interfamily polypharmacology of 2 with B-Raf was used to discover a novel pirin ligand from a very small but privileged compound library despite no apparent ligand or binding site similarity. Our data demonstrates that in areas of drug discovery where intrafamily polypharmacology is often an issue, ligand dissimilarity cannot necessarily be used to assume different off-target profiles and that understanding interfamily polypharmacology will be important in the future to reduce the risk of idiopathic toxicity and in the design of screening libraries.

19.
Mol Oncol ; 12(3): 287-304, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29063678

RESUMO

Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small-molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Melanoma/metabolismo , Purinas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/genética , Células HCT116 , Células HT29 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Purinas/química , Proteína do Retinoblastoma/metabolismo , Sulfonamidas/farmacologia
20.
Cancer Cell ; 32(2): 268-270, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810148
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...