Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0093324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742830

RESUMO

Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.

2.
Laryngoscope ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401061

RESUMO

OBJECTIVES: 17ß-estradiol (E2) is a steroidal hormone with immunomodulatory functions that play a role in infectious and inflammatory diseases. E2 was recently identified as the leading upstream regulator of differentially expressed genes in a comparative RNA sequencing study of pediatric patients with otitis media (OM) versus OM-free counterparts and may therefore play a role in the inflammatory response to bacterial otopathogens during pediatric OM. This study examined the effect of E2 on bacterial-induced inflammatory cytokine expression in an in vitro pediatric OM model. METHODS: An immortalized middle ear (ME) epithelial cell line, ROM-SV40, was developed from a pediatric recurrent OM patient. The culture was exposed to E2 at physiological levels for 1-48 h prior to 6 h-stimulation with nontypeable Haemophilus influenzae (NTHi) whole cell lysate. TNFA, IL1B, IL6, and IL8 were assayed by qPCR and ELISA. RESULTS: E2 pretreatment (24 h) abrogated NTHi induction of IL6; a longer pretreatment (1-10 nM, 48 h) abrogated IL1B induction (p < 0.05). E2 pretreatment (5 nM, 48 h) abrogated NTHi-induced IL8 secretion (p = 0.017). CONCLUSION: E2 pretreatment partially rescued NTHi-induced cytokine production by ME epithelia. These data support a role for E2 in moderating the excessive inflammatory response to middle ear infection that contributes to OM pathophysiology. LEVELS OF EVIDENCE: NA Laryngoscope, 2024.

3.
Laryngoscope ; 134(5): 2322-2330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38084790

RESUMO

OBJECTIVE: Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS: Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS: Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION: Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE: NA Laryngoscope, 134:2322-2330, 2024.


Assuntos
Infecções por Papillomavirus , Infecções Respiratórias , Humanos , Feminino , Camundongos , Animais , Modelos Animais de Doenças , Boca/patologia , Papillomaviridae/genética
4.
Laryngoscope Investig Otolaryngol ; 8(5): 1428-1435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899851

RESUMO

Objective: Otitis media (OM) is among the most frequently diagnosed pediatric diseases in the US. Despite the significant public health burden of OM and the contribution research in culture models has made to understanding its pathobiology, a singular immortalized human middle ear epithelial (MEE) cell line exists (HMEEC-1, adult-derived). We previously developed MEE cultures from pediatric patients with non-inflamed MEE (PCI), recurrent OM (ROM), or OM with effusion (OME) and demonstrated differences in their baseline inflammatory cytokine expression and response to stimulation with an OM-relevant pathogen lysate and cytokines. Herein, we sought to immortalize these cultures and assess retention of their phenotypes. Methods: MEE cultures were immortalized via lentivirus encoding temperature-sensitive SV40 T antigen. Immortalized MEE lines and HMEEC-1 grown in monolayer were stimulated with non-typeable Haemophilus influenzae (NTHi) lysate. Gene expression (TNFA, IL1B, IL6, IL8, MUC5AC, and MUC5B) was assessed by qPCR. Results: Similar to parental cultures, baseline cytokine expressions were higher in pediatric OM lines than in HMEEC-1 and PCI, and HMEEC-1 cells were less responsive to stimulation than pediatric lines. Conclusion: Immortalized MEE lines retained the inflammatory expression and responsiveness of their tissues of origin and differences between non-OM versus OM and pediatric versus adult cultures, supporting their value as novel in vitro culture models for OM.

5.
Laryngoscope Investig Otolaryngol ; 8(4): 953-962, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37621274

RESUMO

Background: Laryngopharyngeal reflux (LPR) causes chronic cough, throat clearing, hoarseness, and dysphagia and can promote laryngeal carcinogenesis. More than 20% of the US population suffers from LPR and there is no effective medical therapy. Pepsin is a predominant source of damage during LPR which disrupts laryngeal barrier function potentially via E-cadherin cleavage proteolysis and downstream matrix metalloproteinase (MMP) dysregulation. Fosamprenavir (FDA-approved HIV therapeutic and prodrug of amprenavir) is a pepsin-inhibiting LPR therapeutic candidate shown to rescue damage in an LPR mouse model. This study aimed to examine amprenavir protection against laryngeal monolayer disruption and related E-cadherin proteolysis and MMP dysregulation in vitro. Methods: Laryngeal (TVC HPV) cells were exposed to buffered saline, pH 7.4 or pH 4 ± 1 mg/mL pepsin ± amprenavir (10-60 min). Analysis was performed by microscopy, Western blot, and real time polymerase chain reaction (qPCR). Results: Amprenavir (1 µM) rescued pepsin acid-mediated cell dissociation (p < .05). Pepsin acid caused E-cadherin cleavage indicative of regulated intramembrane proteolysis (RIP) and increased MMP-1,3,7,9,14 24-h postexposure (p < .05). Acid alone did not cause cell dissociation or E-cadherin cleavage. Amprenavir (10 µM) protected against E-cadherin cleavage and MMP-1,9,14 induction (p < .05). Conclusions: Amprenavir, at serum concentrations achievable provided the manufacturer's recommended dose of fosamprenavir for HIV, protects against pepsin-mediated cell dissociation, E-cadherin cleavage, and MMP dysregulation thought to contribute to barrier dysfunction and related symptoms during LPR. Fosamprenavir to amprenavir conversion by laryngeal epithelia, serum and saliva, and relative drug efficacies in an LPR mouse model are under investigation to inform development of inhaled formulations for LPR.

6.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175640

RESUMO

Epithelial barrier dysfunction is a hallmark of gastroesophageal reflux disease (GERD) related to symptom origination, inflammatory remodeling and carcinogenesis. Alginate-based antireflux medications were previously shown to topically protect against peptic barrier disruption, yet the molecular mechanisms of injury and protection were unclear. Herein, Barrett's esophageal (BAR-T) cells were pretreated with buffered saline (HBSS; control), dilute alginate medications (Gaviscon Advance or Gaviscon Double Action, Reckitt Benckiser), a viscosity-matched placebo, or ADAM10 and matrix metalloproteinase (MMP) inhibitors before exposure to HBSS pH7.4 or pH4 ± 1 mg/mL pepsin for 10-60 min. Cell viability was assessed by ATP assay; mediators of epithelial integrity, E-cadherin, ADAM10, and MMPs were examined by Western blot and qPCR. Alginate rescued peptic reduction of cell viability (p < 0.0001). Pepsin-pH4 yielded E-cadherin fragments indicative of regulated intramembrane proteolysis (RIP) which was not rescued by inhibitors of known E-cadherin sheddases. Transcriptional targets of E-cadherin RIP fragments were elevated at 24 h (MMP-1,2,9,14; p < 0.01). Alginate rescued E-cadherin cleavage, ADAM10 maturation, and MMP induction (p < 0.01). Results support RIP as a novel mechanism of peptic injury during GERD. Alginate residue after wash-out to mimic physiologic esophageal clearance conferred lasting protection against pepsin-induced molecular mechanisms that may exacerbate GERD severity and promote carcinogenesis in the context of weakly acidic reflux.


Assuntos
Refluxo Gastroesofágico , Pepsina A , Humanos , Proteólise , Refluxo Gastroesofágico/tratamento farmacológico , Alginatos/farmacologia , Alginatos/uso terapêutico , Caderinas , Carcinogênese , Metaloproteinases da Matriz
7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047737

RESUMO

Gastroesophageal reflux disease (GERD) significantly impacts patient quality of life and is a major risk factor for the development of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Proton pump inhibitors (PPIs) are the standard-of-care for GERD and are among the most prescribed drugs in the world, but do not protect against nonacid components of reflux such as pepsin, or prevent reflux-associated carcinogenesis. We recently identified an HIV protease inhibitor amprenavir that inhibits pepsin and demonstrated the antireflux therapeutic potential of its prodrug fosamprenavir in a mouse model of laryngopharyngeal reflux. In this study, we assessed the capacity of amprenavir to protect against esophageal epithelial barrier disruption in vitro and related molecular events, E-cadherin cleavage, and matrix metalloproteinase induction, which are associated with GERD severity and esophageal cancer. Herein, weakly acidified pepsin (though not acid alone) caused cell dissociation accompanied by regulated intramembrane proteolysis of E-cadherin. Soluble E-cadherin responsive matrix metalloproteinases (MMPs) were transcriptionally upregulated 24 h post-treatment. Amprenavir, at serum concentrations achievable given the manufacturer-recommended dose of fosamprenavir, protected against pepsin-induced cell dissociation, E-cadherin cleavage, and MMP induction. These results support a potential therapeutic role for amprenavir in GERD recalcitrant to PPI therapy and for preventing GERD-associated neoplastic changes.


Assuntos
Neoplasias Esofágicas , Refluxo Laringofaríngeo , Animais , Camundongos , Pepsina A , Inibidores de Proteases/farmacologia , Qualidade de Vida , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/prevenção & controle , Neoplasias Esofágicas/etiologia , Inibidores Enzimáticos , Inibidores da Bomba de Prótons/uso terapêutico
8.
PLoS Pathog ; 19(4): e1011215, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37036883

RESUMO

Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.


Assuntos
Neoplasias , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Dermatopatias , Animais , Humanos , Camundongos , Diferenciação Celular , Camundongos Nus , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética
9.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893697

RESUMO

The artemisinin family of compounds is cytopathic in certain cancer cell lines that are positive for human papillomaviruses (HPV) and can potentially drive the regression of dysplastic lesions. We evaluated the efficacy of topical dihydroartemisinin (DHA) on cervical dysplasia and anal dysplasia in two papillomavirus mouse models: K14E6/E7 transgenic mice, which express HPV16 oncogenes; and immunodeficient NOD/SCID gamma (NSG) mice infected with Mus musculus papillomavirus (MmuPV1). Mice started treatment with DHA at 25 weeks of age (K14E6/E7) or 20 weeks post infection (MmuPV1-infected), when the majority of mice are known to have papillomavirus-induced low- to high-grade dysplasia. Mice were treated with or without topical DHA at the cervix or anus and with or without topical treatment with the chemical carcinogen 7,12 dimethylbenz(a)anthracene (DMBA) at the anus of in transgenic mice to induce neoplastic progression. Mice were monitored for overt tumor growth, and tissue was harvested after 20 weeks of treatment and scored for severity of histological disease. For MmuPV1-infected mice, anogenital lavages were taken to monitor for viral clearance. Tissues were also evaluated for viral gene expression at the RNA and/or protein levels. Treatment with topical DHA did not reduce dysplasia in the anogenital tract in either papillomavirus-induced mouse model and did not prevent progression to anal cancer in the DMBA-treated K14E6/E7 mice.


Assuntos
Neoplasias do Ânus , Artemisininas , Infecções por Papillomavirus , Animais , Neoplasias do Ânus/tratamento farmacológico , Neoplasias do Ânus/virologia , Artemisininas/farmacologia , Feminino , Hiperplasia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Papillomaviridae , Infecções por Papillomavirus/tratamento farmacológico
10.
PLoS One ; 16(11): e0259245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735515

RESUMO

Anal squamous cell carcinoma (SCC) will be diagnosed in an estimated 9,080 adults in the United States this year, and rates have been rising over the last several decades. Most people that develop anal SCC have associated human papillomavirus (HPV) infection (~85-95%), with approximately 5-15% of anal SCC cases occurring in HPV-negative patients from unknown etiology. This study identified and characterized the Kras-driven, female sex hormone-dependent development of anal squamous cell carcinoma (SCC) in the LSL-KrasG12D; Pdx1-Cre (KC) mouse model that is not dependent on papillomavirus infection. One hundred percent of female KC mice develop anal SCC, while no male KC mice develop tumors. Both male and female KC anal tissue express Pdx1 and Cre-recombinase mRNA, and the activated mutant KrasG12D gene. Although the driver gene mutation KrasG12D is present in anus of both sexes, only female KC mice develop Kras-mutant induced anal SCC. To understand the sex-dependent differences, KC male mice were castrated and KC female mice were ovariectomized. Castrated KC males displayed an unchanged phenotype with no anal tumor formation. In contrast, ovariectomized KC females demonstrated a marked reduction in anal SCC development, with only 15% developing anal SCC. Finally, exogenous administration of estrogen rescued the tumor development in ovariectomized KC female mice and induced tumor development in castrated KC males. These results confirm that the anal SCC is estrogen mediated. The delineation of the role of female sex hormones in mediating mutant Kras to drive anal SCC pathogenesis highlights a subtype of anal SCC that is independent of papillomavirus infection. These findings may have clinical applicability for the papillomavirus-negative subset of anal SCC patients that typically respond poorly to standard of care chemoradiation.


Assuntos
Neoplasias do Ânus/patologia , Carcinoma de Células Escamosas/patologia , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Animais , Neoplasias do Ânus/genética , Neoplasias do Ânus/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estrogênios/metabolismo , Feminino , Masculino , Camundongos , Mutação , Ovariectomia , Fatores Sexuais
11.
mBio ; 12(4): e0161121, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281391

RESUMO

Up to 95% of all anal cancers are associated with infection by human papillomavirus (HPV); however, no established preclinical model exists for high-grade anal disease and cancer mediated by a natural papillomavirus infection. To establish an infection-mediated model, we infected both immunocompromised NSG and immunocompetent FVB/NJ mice with the recently discovered murine papillomavirus MmuPV1, with and without the additional cofactors of UV B radiation (UVB) and/or the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Infections were tracked via lavages and swabs for MmuPV1 DNA, and pathology was assessed at the endpoint. Tissues were analyzed for biomarkers of viral infection and papillomavirus-mediated disease, and the localization of viral infection was investigated using biomarkers to characterize the anal microanatomical zones. IMPORTANCE We show, for the first time, that MmuPV1 infection is sufficient to efficiently mediate high-grade squamous intraepithelial lesions in the anal tract of mice using the NSG immunocompromised strain and that MmuPV1, in combination with the chemical carcinogen DMBA, has carcinogenic potential. We further show that MmuPV1 is able to persist for up to 6 months in the anal tract of FVB/NJ mice irradiated with UVB and contributes to high-grade disease and cancer in an immunocompetent strain. We demonstrate that MmuPV1 preferentially localizes to the anal transition zone and that this localization is not an artifact of infection methodology. This study presents a valuable new preclinical model for studying papillomavirus-mediated anal disease driven by a natural infection.


Assuntos
Canal Anal/patologia , Canal Anal/virologia , Neoplasias do Ânus/virologia , Modelos Animais de Doenças , Camundongos , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/complicações , Animais , Antracenos/administração & dosagem , Neoplasias do Ânus/induzido quimicamente , Feminino , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Infecções por Papillomavirus/patologia , Piperidinas/administração & dosagem , Lesões Intraepiteliais Escamosas/patologia , Lesões Intraepiteliais Escamosas/virologia , Raios Ultravioleta
12.
Virology ; 541: 1-12, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826841

RESUMO

The papillomavirus E5 gene contributes to transformation and tumorigenesis; however, its exact function in these processes and viral pathogenesis is unclear. While E5 is present in high-risk mucosotropic HPVs that cause anogenital and head and neck cancers, it is absent in cutaneous HPVs and the recently discovered mouse papillomavirus (MmuPV1), which causes papillomas and squamous cell carcinomas of the skin and mucosal epithelia in laboratory mice. We infected K14E5 transgenic mice, which express the high-risk mucosotropic HPV16 E5 gene in stratified epithelia, with MmuPV1 to investigate the effects of E5 on papillomavirus-induced pathogenesis. Skin lesions in MmuPV1-infected K14E5 mice had earlier onset, higher incidence, and reduced frequency of spontaneous regression compared to those in non-transgenic mice. K14E5 mice were also more susceptible to cervicovaginal cancers when infected with MmuPV1 and treated with estrogen compared to non-transgenic mice. Our studies support the hypothesis that E5 contributes to papillomavirus-induced pathogenesis.


Assuntos
Carcinoma de Células Escamosas/virologia , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/etiologia , Neoplasias Cutâneas/virologia , Animais , Carcinoma de Células Escamosas/etiologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas Virais/fisiologia , Neoplasias Cutâneas/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...