Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 825706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300111

RESUMO

Carbon dioxide is essential for life. It is at the beginning of every life process as a substrate of photosynthesis. It is at the end of every life process as the product of post-mortem decay. Therefore, it is not surprising that this gas regulates such diverse processes as cellular chemical reactions, transport, maintenance of the cellular environment, and behaviour. Carbon dioxide is a strategically important research target relevant to crop responses to environmental change, insect vector-borne disease and public health. However, we know little of carbon dioxide's direct interactions with the cell. The carbamate post-translational modification, mediated by the nucleophilic attack by carbon dioxide on N-terminal α-amino groups or the lysine ɛ-amino groups, is one mechanism by which carbon dioxide might alter protein function to form part of a sensing and signalling mechanism. We detail known protein carbamates, including the history of their discovery. Further, we describe recent studies on new techniques to isolate this problematic post-translational modification.

2.
J Environ Qual ; 50(6): 1381-1394, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464455

RESUMO

Water treatment residual (WTR) is composed of sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. We explored the microbial risks and benefits of amending nutrient-poor sandy soil with WTRs. Our results showed that the culturable pathogen load of wet and dry WTRs did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 colony forming units per gram dry weight in wet sludges sampled from four South African and Zimbabwean water treatment plants and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella, and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. Application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly affected the bacterial beta diversity of the receiving soil than WTR when analyzed with automated ribosomal intergenic spacer analysis. Thus, although there was a low pathogen risk for WTR amendment in receiving soils and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR.


Assuntos
Solo , Purificação da Água , Efeitos Antropogênicos , Ecossistema , Medição de Risco , Microbiologia do Solo
3.
Microorganisms ; 8(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987846

RESUMO

Moderately thermophilic (Tmax, ~55 °C) methanogens are identified after extended enrichments from temperate, tropical and low-temperature environments. However, thermophilic methanogens with higher growth temperatures (Topt ≥ 60 °C) are only reported from high-temperature environments. A microcosm-based approach was used to measure the rate of methane production and methanogen community structure over a range of temperatures and salinities in sediment from a temperate estuary. We report short-term incubations (<48 h) revealing methanogens with optimal activity reaching 70 °C in a temperate estuary sediment (in situ temperature 4-5 °C). While 30 °C enrichments amended with acetate, H2 or methanol selected for corresponding mesophilic trophic groups, at 60 °C, only hydrogenotrophs (genus Methanothermobacter) were observed. Since these methanogens are not known to be active under in situ temperatures, we conclude constant dispersal from high temperature habitats. The likely provenance of the thermophilic methanogens was studied by enrichments covering a range of temperatures and salinities. These enrichments indicated that the estuarine sediment hosted methanogens encompassing the global activity envelope of most cultured species. We suggest that estuaries are fascinating sink and source environments for microbial function study.

4.
Food Chem Toxicol ; 136: 111069, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31883992

RESUMO

Ionic liquids are a diverse range of charged chemicals with low volatility and often liquids at ambient temperatures. This characteristic has in part lead to them being considered environmentally-friendly replacements for existing volatile solvents. However, methylimidazolium ionic liquids are slow to break down in the environment and a recent study at Newcastle detected 1 octyl 3 methylimidazolium (M8OI) - an 8 carbon variant methylimidazolium ionic liquid - in soils in close proximity to a landfill site. The current M8OI toxicity database in cultured mammalian cells, in experimental animal studies and in model indicators of environmental impact are reviewed. Selected analytical data from the Newcastle study suggest the soils in close proximity to the landfill site, an urban soil lacking overt contamination, had variable levels of M8OI. The potential for M8OI - or a structurally related ionic liquid - to trigger primary biliary cholangitis (PBC), an autoimmune liver disease thought to be triggered by an unknown agent(s) in the environment, is reviewed.


Assuntos
Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Fígado/efeitos dos fármacos , Animais , Linhagem Celular , Humanos
5.
J Hepatol ; 69(5): 1123-1135, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30006067

RESUMO

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is an autoimmune-associated chronic liver disease triggered by environmental factors, such as exposure to xenobiotics, which leads to a loss of tolerance to the lipoic acid-conjugated regions of the mitochondrial pyruvate dehydrogenase complex, typically to the E2 component. We aimed to identify xenobiotics that might be involved in the environmental triggering of PBC. METHODS: Urban landfill and control soil samples from a region with high PBC incidence were screened for xenobiotic activities using analytical, cell-based xenobiotic receptor activation assays and toxicity screens. RESULTS: A variety of potential xenobiotic classes were ubiquitously present, as identified by their interaction with xenobiotic receptors - aryl hydrocarbon receptor, androgen receptor and peroxisome proliferator activated receptor alpha - in cell-based screens. In contrast, xenoestrogens were present at higher levels in soil extracts from around an urban landfill. Furthermore, two landfill sampling sites contained a chemical(s) that inhibited mitochondrial oxidative phosphorylation and induced the apoptosis of a hepatic progenitor cell. The mitochondrial effect was also demonstrated in human liver cholangiocytes from three separate donors. The chemical was identified as the ionic liquid [3-methyl-1-octyl-1H-imidazol-3-ium]+ (M8OI) and the toxic effects were recapitulated using authentic pure chemical. A carboxylate-containing human hepatocyte metabolite of M8OI, bearing structural similarity to lipoic acid, was also enzymatically incorporated into the E2 component of the pyruvate dehydrogenase complex via the exogenous lipoylation pathway in vitro. CONCLUSIONS: These results identify, for the first time, a xenobiotic in the environment that may be related to and/or be a component of an environmental trigger for PBC. Therefore, further study in experimental animal models is warranted, to determine the risk of exposure to these ionic liquids. LAY SUMMARY: Primary biliary cholangitis is a liver disease in which most patients have antibodies to mitochondrial proteins containing lipoic acid binding site(s). This paper identified a man-made chemical present in soils around a waste site. It was then shown that this chemical was metabolized into a product with structural similarity to lipoic acid, which was capable of replacing lipoic acid in mitochondrial proteins.


Assuntos
Colangite/induzido quimicamente , Imidazóis/toxicidade , Poluentes do Solo/toxicidade , Xenobióticos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Receptor alfa de Estrogênio/efeitos dos fármacos , Células Hep G2 , Humanos , Imidazóis/isolamento & purificação , Fígado/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Praguicidas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ratos , Poluentes do Solo/análise , Xenobióticos/isolamento & purificação
6.
Environ Microbiol ; 20(3): 1134-1147, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29393553

RESUMO

Endospores of thermophilic bacteria are found in cold and temperate sediments where they persist in a dormant state. As inactive endospores that cannot grow at the low ambient temperatures, they are akin to tracer particles in cold sediments, unaffected by factors normally governing microbial biogeography (e.g., selection, drift, mutation). This makes thermophilic endospores ideal model organisms for studying microbial biogeography since their spatial distribution can be directly related to their dispersal history. To assess dispersal histories of estuarine bacteria, thermophilic endospores were enriched from sediments along a freshwater-to-marine transect of the River Tyne in high temperature incubations (50°C). Dispersal histories for 75 different taxa indicated that the majority of estuarine endospores were of terrestrial origin; most closely related to bacteria from warm habitats associated with industrial activity. A subset of the taxa detected were marine derived, with close relatives from hot deep marine biosphere habitats. These patterns are consistent with the sources of sediment in the River Tyne being predominantly terrestrial in origin. The results point to microbial communities in estuarine and marine sediments being structured by bi-directional currents, terrestrial run-off and industrial effluent as vectors of passive dispersal and immigration.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Esporos Bacterianos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Temperatura Baixa , Estuários , Temperatura Alta , Microbiota
7.
Toxicol Sci ; 156(1): 54-71, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013213

RESUMO

High systemic levels of oestrogens are cholestatic and primary biliary cholangitis (PBC)-which is characterized by hepatic ductular inflammation-is thought to be triggered by exposure to xenobiotics such as those around landfill sites. Xenoestrogens may be a component of this chemical trigger. We therefore hypothesized that xenoestrogens are present at higher levels in the proximity of landfill sites. To test this hypothesis, soil samples were collected, extracts prepared and biological oestrogenic activity examined using cell-based reporter gene assays. Extracts from several sample sites around a landfill site contained a chemical(s) which activated the human ERα in a dose-dependent manner. Extracts from 3 separate control sampling sites were absent of any detectable activity. The mouse ERα and 2 variant mouse ERß cDNAs were cloned and extracts from sample sites around a landfill site also activated these receptors. One variant murine ERß was constitutively active when expressed in cholangiocytes, was readily inactivated by ICI182780 and activated in a dose-responsive, ICI182780-inhibitable manner by oestrogen. However, when this receptor was activated by extracts from landfill site soils, ICI182780 failed to antagonize activation. ERß was readily detectable in murine cholangiocytes and exposing mice acutely to a pooled ER activating soil extracts also gave rise to a mild cholestatic injury. These data indicate that the environment around landfill sites may contain higher levels of xenoestrogens; that these chemicals have "super-activating" characteristics with a variant ERß and therefore these chemicals could be a component of a xenobiotic insult that triggers PBC.


Assuntos
Processamento Alternativo , Ductos Biliares/efeitos dos fármacos , Colestase/induzido quimicamente , Receptor beta de Estrogênio/agonistas , Estrogênios/toxicidade , Poluentes do Solo/toxicidade , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Colestase/metabolismo , Colestase/patologia , Colestase/prevenção & controle , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/isolamento & purificação , Feminino , Genes Reporter/efeitos dos fármacos , Humanos , Cinética , Masculino , Camundongos , Camundongos Nus , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Poluentes do Solo/antagonistas & inibidores , Poluentes do Solo/isolamento & purificação , Reino Unido , Instalações de Eliminação de Resíduos
8.
PLoS One ; 10(6): e0129733, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083466

RESUMO

Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not necessarily to the seasonal release of previously frozen organic carbon from thawing permafrost soils. However, as temperatures increase such inputs of carbon will likely have a greater influence on methane production and methanogen community structure. Understanding the action and limitations of anaerobic microorganisms within cold environments may provide information which can be used in defining region-specific differences in the microbial processes; which ultimately control methane flux to the atmosphere.


Assuntos
Euryarchaeota/fisiologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Acetatos/metabolismo , Regiões Árticas , Dióxido de Carbono/metabolismo , Euryarchaeota/genética , Sedimentos Geológicos/análise , Hidrogênio/metabolismo , Metanol/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...