Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1515-1524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935379

RESUMO

Ascochyta lentis, the causal organism of Ascochyta blight (AB) of lentil (Lens culinaris), has been shown to produce an avirulence effector protein that mediates AB resistance in certain lentil cultivars. The two known forms of the effector protein were identified from a biparental mapping population between isolates that have reciprocal virulence on 'PBA Hurricane XT' and 'Nipper'. The effector AlAvr1-1 was described for the PBA Hurricane XT-avirulent isolate P94-24 and AlAvr1-2 characterized in the PBA Hurricane XT-virulent isolate AlKewell. Here, we performed a genome-wide association study to identify other loci associated with AB for a differential set of lentil cultivars from a diverse panel of isolates collected in the Australian lentil-growing regions from 2013 to 2020. The chromosome 3 AlAvr1 locus was strongly associated with the PBA Hurricane XT, 'Indianhead', and Nipper disease responses, but one other genomic region on chromosome 11 was also associated with the Nipper disease trait. Our results corroborate earlier work that identified the AlAvr1 locus for field-collected isolates that span the period before release and after widespread adoption of PBA Hurricane XT. A multiplex PCR assay was developed to differentiate the genes AlAvr1-1 and AlAvr1-2 to predict PBA Hurricane XT avirulence and pathotype designation in the diversity panel. Increasing numbers of the PBA Hurricane XT-virulent pathotype 2 isolates across that time indicate strong selection for isolates with the AlAvr1-2 allele. Furthermore, one other region of the A. lentis genome may contribute to the pathogen-host interaction for lentil AB.

2.
Front Plant Sci ; 13: 918211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982697

RESUMO

Ascochyta fabae Speg. is a serious foliar fungal disease of faba bean and a constraint to production worldwide. This study investigated the phenotypic and genotypic diversity of the A. fabae pathogen population in southern Australia and the pathogenic variability of the population was examined on a differential set of faba bean cultivars. The host set was inoculated with 154 A. fabae isolates collected from 2015 to 2018 and a range of disease reactions from high to low aggressiveness was observed. Eighty percent of isolates collected from 2015 to 2018 were categorized as pathogenicity group (PG) PG-2 (pathogenic on Farah) and were detected in every region in each year of collection. Four percent of isolates were non-pathogenic on Farah and designated as PG-1. A small group of isolates (16%) were pathogenic on the most resistant differential cultivars, PBA Samira or Nura, and these isolates were designated PG-3. Mating types of 311 isolates collected between 1991 and 2018 were determined and showed an equal ratio of MAT1-1 and MAT1-2 in the southern Australian population. The genetic diversity and population structure of 305 isolates were examined using DArTseq genotyping, and results suggest no association of genotype with any of the population descriptors viz.: collection year, region, host cultivar, mating type, or PG. A Genome-Wide Association Study (GWAS) was performed to assess genetic association with pathogenicity traits and a significant trait-associated genomic locus for disease in Farah AR and PBA Zahra, and PG was revealed. The high frequency of mating of A. fabae indicated by the wide distribution of the two mating types means changes to virulence genes would be quickly distributed to other genotypes. Continued monitoring of the A. fabae pathogen population through pathogenicity testing will be important to identify any increases in aggressiveness or emergence of novel PGs. GWAS and future genetic studies using biparental mating populations could be useful for identifying virulence genes responsible for the observed changes in pathogenicity.

3.
Mol Plant Pathol ; 23(7): 984-996, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35246929

RESUMO

Ascochyta lentis is a fungal pathogen that causes ascochyta blight in the important grain legume species lentil, but little is known about the molecular mechanism of disease or host specificity. We employed a map-based cloning approach using a biparental A. lentis population to clone the gene AlAvr1-1 that encodes avirulence towards the lentil cultivar PBA Hurricane XT. The mapping population was produced by mating A. lentis isolate P94-24, which is pathogenic on the cultivar Nipper and avirulent towards Hurricane, and the isolate AlKewell, which is pathogenic towards Hurricane but not Nipper. Using agroinfiltration, we found that AlAvr1-1 from the isolate P94-24 causes necrosis in Hurricane but not in Nipper. The homologous corresponding gene in AlKewell, AlAvr1-2, encodes a protein with amino acid variation at 23 sites and four of these sites have been positively selected in the P94-24 branch of the phylogeny. Loss of AlAvr1-1 in a gene knockout experiment produced a P94-24 mutant strain that is virulent on Hurricane. Deletion of AlAvr1-2 in AlKewell led to reduced pathogenicity on Hurricane, suggesting that the gene may contribute to disease in Hurricane. Deletion of AlAvr1-2 did not affect virulence for Nipper and AlAvr1-2 is therefore not an avirulence gene for Nipper. We conclude that the hemibiotrophic pathogen A. lentis has an avirulence effector, AlAvr1-1, that triggers a hypersensitive resistance response in Hurricane. This is the first avirulence gene to be characterized in a legume pathogen from the Pleosporales and may help progress research on other damaging Ascochyta pathogens.


Assuntos
Ascomicetos , Fabaceae , Lens (Planta) , Ascomicetos/genética , Fabaceae/microbiologia , Especificidade de Hospedeiro , Lens (Planta)/genética , Lens (Planta)/microbiologia
4.
Planta ; 243(6): 1387-96, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26725046

RESUMO

MAIN CONCLUSION: Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.


Assuntos
Fusarium/efeitos dos fármacos , Lactonas/farmacologia , Pisum sativum/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Vias Biossintéticas/genética , Suscetibilidade a Doenças , Etilenos/metabolismo , Etilenos/farmacologia , Fusarium/metabolismo , Fusarium/fisiologia , Germinação/efeitos dos fármacos , Lactonas/metabolismo , Mutação , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
5.
Mol Plant Pathol ; 17(5): 680-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26377026

RESUMO

Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth-promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant-microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant-pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole-plant levels using a set of well-characterized hormone mutants, including an ethylene-insensitive ein2 mutant and SL-deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests.


Assuntos
Etilenos/metabolismo , Lactonas/metabolismo , Doenças das Plantas/microbiologia , Pythium/fisiologia , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hifas/crescimento & desenvolvimento , Mutação/genética , Pisum sativum/genética , Pisum sativum/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Esporos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...