Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Nat Commun ; 15(1): 7113, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160214

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Exposure to noxious stimuli such as hyperoxia, volutrauma, and infection in infancy can have long-reaching impacts on lung health and predispose towards the development of conditions such as chronic obstructive pulmonary disease (COPD) in adulthood. BPD and COPD are both marked by lung tissue degradation, neutrophil influx, and decreased lung function. Both diseases also express a change in microbial signature characterized by firmicute depletion. However, the relationship between pulmonary bacteria and the mechanisms of downstream disease development has yet to be elucidated. We hypothesized that murine models of BPD would show heightened acetylated proline-glycine-proline (Ac-PGP) pathway and neutrophil activity, and through gain- and loss-of-function studies we show that Ac-PGP plays a critical role in driving BPD development. We further test a inhaled live biotherapeutic (LBP) using active Lactobacillus strains in in vitro and in vivo models of BPD and COPD. The Lactobacillus-based LBP is effective in improving lung structure and function, mitigating neutrophil influx, and reducing a broad swath of pro-inflammatory markers in these models of chronic pulmonary disease via the MMP-9/PGP (matrix metalloproteinase/proline-glycine-proline) pathway. Inhaled LBPs show promise in addressing common pathways of disease progression that in the future can be targeted in a variety of chronic lung diseases.


Assuntos
Displasia Broncopulmonar , Modelos Animais de Doenças , Lactobacillus , Pulmão , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Animais , Neutrófilos/imunologia , Camundongos , Administração por Inalação , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/terapia , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Displasia Broncopulmonar/imunologia , Displasia Broncopulmonar/microbiologia , Camundongos Endogâmicos C57BL , Feminino , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Pneumonia/microbiologia , Pneumonia/imunologia , Masculino , Prolina/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L694-L699, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014068

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by lung extracellular matrix (ECM) remodeling that contributes to obstruction. This is driven, in part by extracellular vesicles (EVs) from activated neutrophils (PMNs), which express on their surface an α-1 antitrypsin (AAT) insensitive form of neutrophil elastase (NE). These EVs are predicted to bind to collagen fibers via Mac-1 integrins, during which time NE can enzymatically degrade the collagen. Protamine sulfate (PS), a cationic compound used safely for decades in humans, has been shown, in vitro, to dissociate this NE from the EV surface, rendering it AAT-sensitive. In addition, a nonapeptide inhibitor, MP-9, has been shown to prevent EV association with collagen. We sought to test whether PS, MP-9, or a combination of the two could effectively prevent NE+ EV-driven ECM remodeling in an animal COPD model. EVs were preincubated with PBS, protamine sulfate (25 µM), MP-9 (50 µM), or a combination of PS and MP-9. These were delivered intratracheally to anesthetized female 10- to 12-wk-old A/J mice for a 7-day time period. One group of mice was euthanized and lungs sectioned for morphometry, and the other group was used for live pulmonary function testing. The effect of alveolar destruction by activated neutrophil EVs was abrogated by pretreatment with PS or MP-9. However, in pulmonary function tests, only the PS groups (and combined PS/MP-9 groups) returned pulmonary function to near-control levels. These data presented here offer an insight into the effective use of PS in therapeutic setting for EV-derived alveolar damage.NEW & NOTEWORTHY Protamine sulfate facilitates the removal of neutrophil elastase (NE) from the surface of extracellular vesicles from activated neutrophils. This "free" NE is no longer protected from inhibition by its endogenous anti-protease, α-1-anti-trypsin. This function of protamine sulfate highlights it as a potential therapeutic strategy for COPD, which may attenuate the disease process.


Assuntos
Enfisema , Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Feminino , Camundongos , Animais , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno/metabolismo , Vesículas Extracelulares/metabolismo
4.
JCI Insight ; 7(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35077395

RESUMO

Chronic obstructive pulmonary disease (COPD) is a debilitating chronic disease and the third-leading cause of mortality worldwide. It is characterized by airway neutrophilia, promoting tissue injury through release of toxic mediators and proteases. Recently, it has been shown that neutrophil-derived extracellular vesicles (EVs) from lungs of patients with COPD can cause a neutrophil elastase-dependent (NE-dependent) COPD-like disease upon transfer to mouse airways. However, in vivo preclinical models elucidating the impact of EVs on disease are lacking, delaying opportunities for therapeutic testing. Here, we developed an in vivo preclinical mouse model of lung EV-induced COPD. EVs from in vivo LPS-activated mouse neutrophils induced COPD-like disease in naive recipients through an α-1 antitrypsin-resistant, NE-dependent mechanism. Together, these results show a key pathogenic and mechanistic role for neutrophil-derived EVs in a mouse model of COPD. Broadly, the in vivo model described herein could be leveraged to develop targeted therapies for severe lung disease.


Assuntos
Vesículas Extracelulares/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/complicações , Animais , Modelos Animais de Doenças , Camundongos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo
5.
Annu Rev Physiol ; 84: 631-654, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724435

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous, smoking-related disease of significant global impact. The complex biology of COPD is ultimately driven by a few interrelated processes, including proteolytic tissue remodeling, innate immune inflammation, derangements of the host-pathogen response, aberrant cellular phenotype switching, and cellular senescence, among others. Each of these processes are engendered and perpetuated by cells modulating their environment or each other. Extracellular vesicles (EVs) are powerful effectors that allow cells to perform a diverse array of functions on both adjacent and distant tissues, and their pleiotropic nature is only beginning to be appreciated. As such, EVs are candidates to play major roles in these fundamental mechanisms of disease behind COPD. Furthermore, some such roles for EVs are already established, and EVs are implicated in significant aspects of COPD pathogenesis. Here, we discuss known and potential ways that EVs modulate the environment of their originating cells to contribute to the processes that underlie COPD.


Assuntos
Exossomos , Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Senescência Celular , Humanos , Inflamação
6.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830084

RESUMO

Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.


Assuntos
Lesão Pulmonar Aguda/imunologia , COVID-19 , Cefadroxila/farmacologia , Inflamação/metabolismo , Oligopeptídeos , Prolina/análogos & derivados , Simportadores , Animais , Antibacterianos/farmacologia , Transporte Biológico Ativo/imunologia , COVID-19/imunologia , COVID-19/metabolismo , Células Cultivadas , Fatores Quimiotáticos/imunologia , Fatores Quimiotáticos/farmacologia , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Matriz Extracelular , Proteínas da Matriz Extracelular/metabolismo , Humanos , Camundongos , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Prolina/imunologia , Prolina/farmacologia , Simportadores/antagonistas & inibidores , Simportadores/metabolismo
7.
JCI Insight ; 6(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33571164

RESUMO

Altered inflammation and tissue remodeling are cardinal features of cardiovascular disease and cardiac transplant rejection. Neutrophils have increasingly been understood to play a critical role in acute rejection and early allograft failure; however, discrete mechanisms that drive this damage remain poorly understood. Herein, we demonstrate that early acute cardiac rejection increases allograft prolyl endopeptidase (PE) in association with de novo production of the neutrophil proinflammatory matrikine proline-glycine-proline (PGP). In a heterotopic murine heart transplant model, PGP production and PE activity were associated with early neutrophil allograft invasion and allograft failure. Pharmacologic inhibition of PE with Z-Pro-prolinal reduced PGP, attenuated early neutrophil graft invasion, and reduced proinflammatory cytokine expression. Importantly, these changes helped preserve allograft rejection-free survival and function. Notably, within 2 independent patient cohorts, both PGP and PE activity were increased among patients with biopsy-proven rejection. The observed induction of PE and matrikine generation provide a link between neutrophilic inflammation and cardiovascular injury, represent a potential target to reduce allogenic immune responses, and uncover a mechanism of cardiovascular disease that has been previously unrecognized to our knowledge.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração , Neutrófilos/imunologia , Prolil Oligopeptidases/metabolismo , Adulto , Idoso , Animais , Procedimentos Clínicos , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
8.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33108351

RESUMO

Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage (P3-P5) but not alveolar stage (P10-P12) of lung development disrupted elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progressed through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation downregulated elastin and fibulin-5 expression by saccular-stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. Although neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early-life predisposition to COPD.


Assuntos
Elastina/metabolismo , Neutrófilos/metabolismo , Alvéolos Pulmonares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Elastina/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Transgênicos , Neutrófilos/patologia , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia
9.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L421-L428, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644312

RESUMO

Airway microbial dysbiosis is associated with subsequent bronchopulmonary dysplasia (BPD) development in very preterm infants. However, the relationship of airway microbiome in normal pulmonary development has not been defined. To better understand the role of the airway microbiome, we compared normal and abnormal alveolar and pulmonary vascular development in mice with or without a microbiome. We hypothesized that the lungs of germ-free (GF) mice would have an exaggerated phenotypic response to hyperoxia compared with non-germ-free (NGF) mice. With the use of a novel gnotobiotic hyperoxia chamber, GF and NGF mice were exposed to either normoxia or hyperoxia. Alveolar morphometry, pulmonary mechanics, echocardiograms, inflammatory markers, and measures of pulmonary hypertension were studied. GF and NGF mice in normoxia showed no difference, whereas GF mice in hyperoxia showed protected lung structure and mechanics and decreased markers of inflammation compared with NGF mice. We speculate that an increase in abundance of pathogenic bacteria in NGF mice may play a role in BPD pathogenesis by regulating the proinflammatory signaling and neutrophilic inflammation in lungs. Manipulation of the airway microbiome may be a potential therapeutic intervention in BPD and other lung diseases.


Assuntos
Vida Livre de Germes , Hiperóxia/patologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Pressão Sanguínea , Modelos Animais de Doenças , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hiperóxia/fisiopatologia , Inflamação/complicações , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/patologia , Alvéolos Pulmonares/fisiopatologia , Sístole
10.
J Cyst Fibros ; 19(1): 40-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176670

RESUMO

BACKGROUND: Proline-glycine-proline (PGP) is a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP-9) and prolylendopeptidase (PE), and capable of eliciting neutrophil chemotaxis and epithelial remodelling. PGP is normally then degraded by leukotriene A4 hydrolase (LTA4H) to limit inflammation and remodelling. This study hypothesized that early and persistent airway neutrophilia in Cystic Fibrosis (CF) may relate to abnormalities in the PGP pathway and sought to understand underlying mechanisms. METHODS: Broncho-alveolar lavage (BAL) fluid was obtained from 38 CF (9 newborns and 29 older children) and 24 non-CF children. BAL cell differentials and levels of PGP, MMP-9, PE and LTA4H were assessed. RESULTS: Whilst PGP was present in all but one of the older CF children tested, it was absent in non-CF controls and the vast majority of CF newborns. BAL levels of MMP-9 and PE were elevated in older children with CF relative to CF newborns and non-CF controls, correlating with airway neutrophilia and supportive of PGP generation. Furthermore, despite extracellular LTA4H commonly being greatly elevated concomitantly with inflammation to promote PGP degradation, this was not the case in CF children, potentially owing to degradation by neutrophil elastase. CONCLUSIONS: A striking imbalance between PGP-generating and -degrading enzymes enables PGP accumulation in CF children from early life and potentially supports airway neutrophilia.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Quimiotaxia de Leucócito/imunologia , Fibrose Cística , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos , Oligopeptídeos/metabolismo , Prolina/análogos & derivados , Prolil Oligopeptidases/metabolismo , Remodelação das Vias Aéreas/imunologia , Broncoscopia/métodos , Criança , Fibrose Cística/diagnóstico , Fibrose Cística/imunologia , Fibrose Cística/fisiopatologia , Feminino , Humanos , Recém-Nascido , Inflamação/metabolismo , Elastase de Leucócito/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Prolina/metabolismo , Escarro/imunologia
12.
Dev Cell ; 51(4): 421-430.e3, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679858

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Evolução Molecular , Humanos , Lampreias
13.
Respir Res ; 20(1): 254, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718676

RESUMO

BACKGROUND: Pulmonary and systemic inflammation are central features of chronic obstructive pulmonary disease (COPD). Previous studies have demonstrated relationships between biologically active extracellular matrix components, or matrikines, and COPD pathogenesis. We studied the relationships between the matrikine acetyl-proline-glycine-proline (AcPGP) in sputum and plasma and clinical features of COPD. METHODS: Sputum and plasma samples were obtained from COPD participants in the SPIROMICS cohort at enrollment. AcPGP was isolated using solid phase extraction and measured by mass spectrometry. Demographics, spirometry, quality of life questionnaires, and quantitative computed tomography (CT) imaging with parametric response mapping (PRM) were obtained at baseline. Severe COPD exacerbations were recorded at 1-year of prospective follow-up. We used linear and logistic regression models to measure associations between AcPGP and features of COPD, and Kaplan-Meier analyses to measure time-to-first severe exacerbation. RESULTS: The 182 COPD participants in the analysis were 66 ± 8 years old, 62% male, 84% White race, and 39% were current smokers. AcPGP concentrations were 0.61 ± 1.89 ng/mL (mean ± SD) in sputum and 0.60 ± 1.13 ng/mL in plasma. In adjusted linear regression models, sputum AcPGP was associated with FEV1/FVC, spirometric GOLD stage, PRM-small airways disease, and PRM-emphysema. Sputum AcPGP also correlated with severe AECOPD, and elevated sputum AcPGP was associated with shorter time-to-first severe COPD exacerbation. In contrast, plasma AcPGP was not associated with symptoms, pulmonary function, or severe exacerbation risk. CONCLUSIONS: In COPD, sputum but not plasma AcPGP concentrations are associated with the severity of airflow limitation, small airways disease, emphysema, and risk for severe AECOPD at 1-year of follow-up. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01969344 (SPIROMICS).


Assuntos
Glicina/sangue , Prolina/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Espirometria/métodos , Escarro/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Escarro/química
14.
Biochem Biophys Res Commun ; 517(4): 691-696, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400851

RESUMO

Neutrophil influx and activation contributes to organ damage in several major lung diseases. This inflammatory influx is initiated and propagated by both classical chemokines such as interleukin-8 and by downstream mediators such as the collagen fragment cum neutrophil chemokine Pro-Gly-Pro (PGP), which share use of the ELR + CXC receptor family. Benzyloxycarbonyl-proline-prolinal (ZPP) is known to suppress the PGP pathway via inhibition of prolyl endopeptidase (PE), the terminal enzyme in the generation of PGP from collagen. However, the structural homology of ZPP and PGP suggests that ZPP might also directly affect classical glutamate-leucine-arginine positive (ELR+) CXC chemokine signaling. In this investigation, we confirm that ZPP inhibits PE in vitro, demonstrate that ZPP inhibits both ELR + CXC and PGP-mediated chemotaxis in human and murine neutrophils, abrogates neutrophil influx induced by murine intratracheal challenge with LPS, and attenuates human neutrophil chemotaxis to sputum samples of human subjects with cystic fibrosis. Cumulatively, these data demonstrate that ZPP has dual, complementary inhibitory effects upon neutrophil chemokine/matrikine signaling which make it an attractive compound for clinical study of neutrophil inhibition in conditions (such as cystic fibrosis and chronic obstructive pulmonary disease) which evidence concurrent harmful increases of both chemokine and matrikine signaling.


Assuntos
Neutrófilos/efeitos dos fármacos , Prolina/análogos & derivados , Animais , Quimiotaxia/efeitos dos fármacos , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neutrófilos/patologia , Oligopeptídeos/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Escarro/efeitos dos fármacos , Escarro/metabolismo
15.
Sci Transl Med ; 11(497)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217333

RESUMO

We provide further evidence to support our assertion that PGP is a potent regulator of epithelial remodeling.


Assuntos
Asma , Hipersensibilidade Respiratória , Matriz Extracelular , Humanos
16.
Am J Respir Cell Mol Biol ; 61(5): 560-566, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30958968

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide and is characterized by an excessive airway neutrophilic response. The neutrophil chemoattractant proline-glycine-proline (PGP) and its more potent acetylated form (acPGP) have been found to be elevated in patients with COPD and act via CXCR2. Here, we investigated the impact of neutralizing PGP peptides in a murine model for emphysema. The PGP-neutralizing peptide l-arginine-threonine-arginine (RTR) was used first in a 6-week model of cigarette smoke exposure, where it attenuated lung inflammation. Then, in a model of chronic smoke exposure, mice were exposed to cigarette smoke and RTR treatment was initiated after 10 weeks of smoke exposure. This treatment was continued together with smoke exposure for another 13 weeks, for a total of 23 weeks of smoke exposure. RTR significantly inhibited neutrophil and macrophage influx into the lungs in the 6-week model of exposure. RTR also attenuated the development of emphysema, normalized lung volumes, and reduced right ventricular hypertrophy in the chronic exposure model. Murine epithelia expressed CXCR2, and this expression was increased after smoke exposure. In vitro, human bronchial epithelial cells also demonstrated robust expression of CXCR2, and stimulation of primary human bronchial epithelial cells with acPGP led to increased release of MMP-9 and IL-8. Overall, these results provide evidence that acPGP plays a critical role during the development of emphysema in cigarette smoke-induced injury, and highlight a new epithelial mechanism by which acPGP augments neutrophilic inflammation.


Assuntos
Inflamação/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/etiologia , Animais , Células Cultivadas , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Oligopeptídeos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos
17.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633902

RESUMO

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Assuntos
Exossomos/fisiologia , Neutrófilos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Humanos , Inflamação , Integrinas , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , alfa 1-Antitripsina/metabolismo
18.
Am J Respir Cell Mol Biol ; 61(2): 162-173, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30576219

RESUMO

Cigarette smoking is associated with chronic obstructive pulmonary disease and chronic bronchitis. Acquired ion transport abnormalities, including cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, caused by cigarette smoking have been proposed as potential mechanisms for mucus obstruction in chronic bronchitis. Although e-cigarette use is popular and perceived to be safe, whether it harms the airways via mechanisms altering ion transport remains unclear. In the present study, we sought to determine if e-cigarette vapor, like cigarette smoke, has the potential to induce acquired CFTR dysfunction, and to what degree. Electrophysiological methods demonstrated reduced chloride transport caused by vaporized e-cigarette liquid or vegetable glycerin at various exposures (30 min, 57.2% and 14.4% respectively, vs. control; P < 0.0001), but not by unvaporized liquid (60 min, 17.6% vs. untreated), indicating that thermal degradation of these products is required to induce the observed defects. We also observed reduced ATP-dependent responses (-10.8 ± 3.0 vs. -18.8 ± 5.1 µA/cm2 control) and epithelial sodium channel activity (95.8% reduction) in primary human bronchial epithelial cells after 5 minutes, suggesting that exposures dramatically inhibit epithelial ion transport beyond CFTR, even without diminished transepithelial resistance or cytotoxicity. Vaporizing e-cigarette liquid produced reactive aldehydes, including acrolein (shown to induce acquired CFTR dysfunction), as quantified by mass spectrometry, demonstrating that respiratory toxicants in cigarette smoke can also be found in e-cigarette vapor (30 min air, 224.5 ± 15.99; unvaporized liquid, 284.8 ± 35.03; vapor, 54,468 ± 3,908 ng/ml; P < 0.0001). E-cigarettes can induce ion channel dysfunction in airway epithelial cells, partly through acrolein production. These findings indicate a heretofore unknown toxicity of e-cigarette use known to be associated with chronic bronchitis onset and progression, as well as with chronic obstructive pulmonary disease severity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Glicerol/efeitos adversos , Transporte de Íons , Fumaça/efeitos adversos , Fumar/efeitos adversos , Acroleína/química , Trifosfato de Adenosina/metabolismo , Brônquios/metabolismo , Bronquite Crônica/fisiopatologia , Sobrevivência Celular , Fumar Cigarros , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Progressão da Doença , Eletrofisiologia , Células Epiteliais/metabolismo , Glicerol/metabolismo , Humanos , Espectrometria de Massas , Muco/metabolismo , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/efeitos dos fármacos , Fatores de Tempo
19.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L653-L661, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091378

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, PaO2 to FIO2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.


Assuntos
Inflamação/etiologia , Lesão Pulmonar/etiologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Oligopeptídeos/metabolismo , Prolina/análogos & derivados , Síndrome do Desconforto Respiratório/etiologia , Adulto , Animais , Permeabilidade Capilar , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/patologia , Prolina/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
20.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L810-L815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113227

RESUMO

The pathogenesis of bronchopulmonary dysplasia (BPD) is not well understood. We previously identified differences in the airway microbiome at birth between preterm infants who were BPD predisposed versus those who were BPD resistant. In this study, we attempted to identify mechanisms by which the airway microbiome could modify the risk for BPD. We used a software-based method to predict the metagenome of the tracheal aspirate (TA) microbiome from 16S rRNA sequencing data in preterm infants and to identify functional ortholog genes that were differentially abundant in BPD-predisposed and BPD-resistant infants. We also identified metabolites that were differentially enriched in these samples by use of untargeted mass spectrometry and mummichog to identify the metabolic pathways involved. Microbial metagenome analysis identified specific pathways that were less abundant in the functional metagenome of the microbiota of BPD-predisposed infants compared with BPD-resistant infants. The airway metabolome of BPD-predisposed infants was enriched for metabolites involved in fatty acid activation and androgen and estrogen biosynthesis compared with BPD-resistant infants. These findings suggest that in extremely preterm infants the early airway microbiome may alter the metabolome, thereby modifying the risk of BPD. The differential enrichment of sex steroid metabolic pathways supports previous studies suggesting a role for sexual dimorphism in BPD risk. This study also suggests a role for metabolomic and metagenomic profiles to serve as early biomarkers of BPD risk.


Assuntos
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/microbiologia , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Metagenoma/fisiologia , Microbiota/fisiologia , Traqueia/microbiologia , Biomarcadores/metabolismo , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Metabolômica/métodos , RNA Ribossômico 16S/metabolismo , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA