Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
2.
Res Sq ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559235

RESUMO

BACKGROUND: The global setback in tuberculosis (TB) prevalence and mortality in the post-COVID-19 era have been partially attributed to pandemic-related disruptions in healthcare systems. The additional biological contribution of COVID-19 to TB is less clear. The goal of this study was to determine if there is an association between COVID-19 in the past 18 months and a new TB episode, and the role played by type 2 diabetes mellitus (DM) comorbidity in this relationship. METHODS: A cross-sectional study was conducted among 112 new active TB patients and 373 non-TB controls, identified between June 2020 and November 2021 in communities along the Mexican border with Texas. Past COVID-19 was based on self-report or positive serology. Bivariable/multivariable analysis were used to evaluate the odds of new TB in hosts with past COVID-19 and/or DM status. RESULTS: The odds of new TB were higher among past COVID-19 cases vs. controls, but only significant among DM patients (aOR 2.3). The odds of TB given DM was 2.7-fold among participants without past COVID-19 and increased to 7.9-fold among those with past COVID-19. CONCLUSION: DM interacts with past COVID-19 synergistically to magnify the risk of TB. Latent TB screening and prophylactic treatment, if positive, is recommended in this COVID-19/DM/latent TB high-risk group.

3.
Mucosal Immunol ; 17(2): 155-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185331

RESUMO

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Idoso , Adulto , Humanos , Células Epiteliais Alveolares , Citosol , Pulmão/microbiologia , Macrófagos Alveolares
4.
Gastroenterology ; 166(5): 886-901.e7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
5.
J Neurochem ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063257

RESUMO

Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13 C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.

6.
Toxins (Basel) ; 15(11)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999486

RESUMO

GroEL is a chaperonin that helps other proteins fold correctly. However, alternative activities, such as acting as an insect toxin, have also been discovered. This work evaluates the chaperonin and insecticidal activity of different GroEL proteins from entomopathogenic nematodes on G. mellonella. The ability to synergize with the ExoA toxin of Pseudomonas aeruginosa was also investigated. The GroELXn protein showed the highest insecticidal activity among the different GroELs. In addition, it was able to significantly activate the phenoloxidase system of the target insects. This could tell us about the mechanism by which it exerts its toxicity on insects. GroEL proteins can enhance the toxic activity of the ExoA toxin, which could be related to its chaperonin activity. However, there is a significant difference in the synergistic effect that is more related to its alternative activity as an insecticidal toxin.


Assuntos
Inseticidas , Mariposas , Nematoides , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacologia , Insetos/metabolismo , Bactérias/metabolismo , Larva/metabolismo
7.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892143

RESUMO

Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aß42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aß42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Masculino , Camundongos , Feminino , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Cálcio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Hipocampo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
8.
Medicine (Baltimore) ; 102(41): e35458, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832052

RESUMO

Older people are at high risk of developing and dying from pulmonary infections like tuberculosis (TB), but there are few studies among them, particularly in Hispanics. To address these gaps, we sought to identify host factors associated with TB and adverse treatment outcomes in older Hispanics by conducting a cross-sectional study of TB surveillance data from Tamaulipas, Mexico (2006-2013; n = 8381). Multivariable logistic regressions were assessed for older adults (OA ≥65 years) when compared to young (YA, 18-39 years) and middle-aged adults (40-64 years). We found that the OA had features associated with a less complicated TB (e.g., lower prevalence of extra-pulmonary TB and less likely to abandon treatment or have drug resistant TB), and yet, were more likely to die during TB treatment (adj-OR 3.9, 95% 2.5, 5.25). Among the OA, excess alcohol use and low body mass index increased their odds of death during TB treatment, while a higher number of reported contacts (social support) was protective. Diabetes was not associated with adverse outcomes in OA. Although older age is a predictor of death during TB disease, OA are not prioritized by the World Health Organization for latent TB infection screening and treatment during contact investigations. With safer, short-course latent TB infection treatment available, we propose the inclusion of OA as a high-risk group in latent TB management guidelines.


Assuntos
Tuberculose Latente , Idoso , Humanos , Pessoa de Meia-Idade , Estudos Transversais , Hispânico ou Latino , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/epidemiologia , Tuberculose Latente/etnologia , México/epidemiologia , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose/etnologia , Adolescente , Adulto Jovem , Adulto , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/etnologia
9.
Brain Behav Immun ; 113: 353-373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543250

RESUMO

Frontotemporal dementia (FTD) is a common cause of early-onset dementia, with no current treatment options. FTD linked to chromosome 3 (FTD3) is a rare sub-form of the disease, caused by a point mutation in the Charged Multivesicular Body Protein 2B (CHMP2B). This mutation causes neuronal phenotypes, such as mitochondrial deficiencies, accompanied by metabolic changes and interrupted endosomal-lysosomal fusion. However, the contribution of glial cells to FTD3 pathogenesis has, until recently, been largely unexplored. Glial cells play an important role in most neurodegenerative disorders as drivers and facilitators of neuroinflammation. Microglia are at the center of current investigations as potential pro-inflammatory drivers. While gliosis has been observed in FTD3 patient brains, it has not yet been systematically analyzed. In the light of this, we investigated the role of microglia in FTD3 by implementing human induced pluripotent stem cells (hiPSC) with either a heterozygous or homozygous CHMP2B mutation, introduced into a healthy control hiPSC line via CRISPR-Cas9 precision gene editing. These hiPSC were differentiated into microglia to evaluate the pro-inflammatory profile and metabolic state. Moreover, hiPSC-derived neurons were cultured with conditioned microglia media to investigate disease specific interactions between the two cell populations. Interestingly, we identified two divergent inflammatory microglial phenotypes resulting from the underlying mutations: a severe pro-inflammatory profile in CHMP2B homozygous FTD3 microglia, and an "unresponsive" CHMP2B heterozygous FTD3 microglial state. These findings correlate with our observations of increased phagocytic activity in CHMP2B homozygous, and impaired protein degradation in CHMP2B heterozygous FTD3 microglia. Metabolic mapping confirmed these differences, revealing a metabolic reprogramming of the CHMP2B FTD3 microglia, displayed as a compensatory up-regulation of glutamine metabolism in the CHMP2B homozygous FTD3 microglia. Intriguingly, conditioned CHMP2B homozygous FTD3 microglia media caused neurotoxic effects, which was not evident for the heterozygous microglia. Strikingly, IFN-γ treatment initiated an immune boost of the CHMP2B heterozygous FTD3 microglia, and conditioned microglia media exposure promoted neural outgrowth. Our findings indicate that the microglial profile, activity, and behavior is highly dependent on the status of the CHMP2B mutation. Our results suggest that the heterozygous state of the mutation in FTD3 patients could potentially be exploited in form of immune-boosting intervention strategies to counteract neurodegeneration.


Assuntos
Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
10.
Res Sq ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333188

RESUMO

Background: Mycobacterium tuberculosis (M.tb), the causative bacterium of tuberculosis (TB), establishes residence and grows in human alveolar macrophages (AMs). Inter-individual variation in M.tb-human AM interactions can indicate TB risk and the efficacy of therapies and vaccines; however, we currently lack an understanding of the gene and protein expression programs that dictate this variation in the lungs. Results: Herein, we systematically analyze interactions of a virulent M.tb strain H37Rv with freshly isolated human AMs from 28 healthy adult donors, measuring host RNA expression and secreted candidate proteins associated with TB pathogenesis over 72h. A large set of genes possessing highly variable inter-individual expression levels are differentially expressed in response to M.tb infection. Eigengene modules link M.tb growth rate with host transcriptional and protein profiles at 24 and 72h. Systems analysis of differential RNA and protein expression identifies a robust network with IL1B, STAT1, and IDO1 as hub genes associated with M.tb growth. RNA time profiles document stimulation towards an M1-type macrophage gene expression followed by emergence of an M2-type profile. Finally, we replicate these results in a cohort from a TB-endemic region, finding a substantial portion of significant differentially expressed genes overlapping between studies. Conclusions: We observe large inter-individual differences in bacterial uptake and growth, with tenfold variation in M.tb load by 72h.The fine-scale resolution of this work enables the identification of genes and gene networks associated with early M.tb growth dynamics in defined donor clusters, an important step in developing potential biological indicators of individual susceptibility to M.tb infection and response to therapies.

11.
Neurobiol Dis ; 182: 106145, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150307

RESUMO

Disrupted brain metabolism is a critical component of several neurodegenerative diseases. Energy metabolism of both neurons and astrocytes is closely connected to neurotransmitter recycling via the glutamate/GABA-glutamine cycle. Neurons and astrocytes hereby work in close metabolic collaboration which is essential to sustain neurotransmission. Elucidating the mechanistic involvement of altered brain metabolism in disease progression has been aided by the advance of techniques to monitor cellular metabolism, in particular by mapping metabolism of substrates containing stable isotopes, a technique known as isotope tracing. Here we review key aspects of isotope tracing including advantages, drawbacks and applications to different cerebral preparations. In addition, we narrate how isotope tracing has facilitated the discovery of central metabolic features in neurodegeneration with a focus on the metabolic cooperation between neurons and astrocytes.


Assuntos
Neuroglia , Neurônios , Neurônios/metabolismo , Astrócitos/metabolismo , Transmissão Sináptica , Isótopos/metabolismo
12.
Front Neurosci ; 17: 1120086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875643

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, with no current cure. Consequently, alternative approaches focusing on early pathological events in specific neuronal populations, besides targeting the well-studied amyloid beta (Aß) accumulations and Tau tangles, are needed. In this study, we have investigated disease phenotypes specific to glutamatergic forebrain neurons and mapped the timeline of their occurrence, by implementing familial and sporadic human induced pluripotent stem cell models as well as the 5xFAD mouse model. We recapitulated characteristic late AD phenotypes, such as increased Aß secretion and Tau hyperphosphorylation, as well as previously well documented mitochondrial and synaptic deficits. Intriguingly, we identified Golgi fragmentation as one of the earliest AD phenotypes, indicating potential impairments in protein processing and post-translational modifications. Computational analysis of RNA sequencing data revealed differentially expressed genes involved in glycosylation and glycan patterns, whilst total glycan profiling revealed minor glycosylation differences. This indicates general robustness of glycosylation besides the observed fragmented morphology. Importantly, we identified that genetic variants in Sortilin-related receptor 1 (SORL1) associated with AD could aggravate the Golgi fragmentation and subsequent glycosylation changes. In summary, we identified Golgi fragmentation as one of the earliest disease phenotypes in AD neurons in various in vivo and in vitro complementary disease models, which can be exacerbated via additional risk variants in SORL1.

13.
Front Immunol ; 14: 1121495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993975

RESUMO

Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.


Assuntos
Anti-Infecciosos , Sirtuínas , Tuberculose , Humanos , Histonas/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Epigênese Genética , Espécies Reativas de Oxigênio/metabolismo , NAD/metabolismo , Macrófagos , Anti-Infecciosos/metabolismo
14.
J Neurochem ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949663

RESUMO

Ca2+ /calmodulin-dependent protein kinase II alpha (CaMKIIα) is a key regulator of neuronal signaling and synaptic plasticity. Synaptic activity and neurotransmitter homeostasis are closely coupled to the energy metabolism of both neurons and astrocytes. However, whether CaMKIIα function is implicated in brain energy and neurotransmitter metabolism remains unclear. Here, we explored the metabolic consequences of CaMKIIα deletion in the cerebral cortex using a genetic CaMKIIα knockout (KO) mouse. Energy and neurotransmitter metabolism was functionally investigated in acutely isolated cerebral cortical slices using stable 13 C isotope tracing, whereas the metabolic function of synaptosomes was assessed by the rates of glycolytic activity and mitochondrial respiration. The oxidative metabolism of [U-13 C]glucose was extensively reduced in cerebral cortical slices of the CaMKIIα KO mice. In contrast, metabolism of [1,2-13 C]acetate, primarily reflecting astrocyte metabolism, was unaffected. Cellular uptake, and subsequent metabolism, of [U-13 C]glutamate was decreased in cerebral cortical slices of CaMKIIα KO mice, whereas uptake and metabolism of [U-13 C]GABA were unaffected, suggesting selective metabolic impairments of the excitatory system. Synaptic metabolic function was maintained during resting conditions in isolated synaptosomes from CaMKIIα KO mice, but both the glycolytic and mitochondrial capacities became insufficient when the synaptosomes were metabolically challenged. Collectively, this study shows that global deletion of CaMKIIα significantly impairs cellular energy and neurotransmitter metabolism, particularly of neurons, suggesting a metabolic role of CaMKIIα signaling in the brain.

15.
Ecol Evol ; 13(2): e9837, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844667

RESUMO

The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

16.
Small Methods ; 7(4): e2201516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775977

RESUMO

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

17.
J Hepatol ; 78(2): 364-375, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848245

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a heterogeneous and lethal malignancy, the molecular origins of which remain poorly understood. MicroRNAs (miRs) target diverse signalling pathways, functioning as potent epigenetic regulators of transcriptional output. We aimed to characterise miRNome dysregulation in CCA, including its impact on transcriptome homeostasis and cell behaviour. METHODS: Small RNA sequencing was performed on 119 resected CCAs, 63 surrounding liver tissues, and 22 normal livers. High-throughput miR mimic screens were performed in three primary human cholangiocyte cultures. Integration of patient transcriptomes and miRseq together with miR screening data identified an oncogenic miR for characterization. MiR-mRNA interactions were investigated by a luciferase assay. MiR-CRISPR knockout cells were generated and phenotypically characterized in vitro (proliferation, migration, colony, mitochondrial function, glycolysis) and in vivo using subcutaneous xenografts. RESULTS: In total, 13% (140/1,049) of detected miRs were differentially expressed between CCA and surrounding liver tissues, including 135 that were upregulated in tumours. CCA tissues were characterised by higher miRNome heterogeneity and miR biogenesis pathway expression. Unsupervised hierarchical clustering of tumour miRNomes identified three subgroups, including distal CCA-enriched and IDH1 mutant-enriched subgroups. High-throughput screening of miR mimics uncovered 71 miRs that consistently increased proliferation of three primary cholangiocyte models and were upregulated in CCA tissues regardless of anatomical location, among which only miR-27a-3p had consistently increased expression and activity in several cohorts. FoxO signalling was predominantly downregulated by miR-27a-3p in CCA, partially through targeting of FOXO1. MiR-27a knockout increased FOXO1 levels in vitro and in vivo, impeding tumour behaviour and growth. CONCLUSIONS: The miRNomes of CCA tissues are highly remodelled, impacting transcriptome homeostasis in part through regulation of transcription factors like FOXO1. MiR-27a-3p arises as an oncogenic vulnerability in CCA. IMPACT AND IMPLICATIONS: Cholangiocarcinogenesis entails extensive cellular reprogramming driven by genetic and non-genetic alterations, but the functional roles of these non-genetic events remain poorly understood. By unveiling global miRNA upregulation in patient tumours and their functional ability to increase proliferation of cholangiocytes, these small non-coding RNAs are implicated as critical non-genetic alterations promoting biliary tumour initiation. These findings identify possible mechanisms for transcriptome rewiring during transformation, with potential implications for patient stratification.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteína Forkhead Box O1 , MicroRNAs , Humanos , Neoplasias dos Ductos Biliares/genética , Ductos Biliares , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/genética , MicroRNAs/genética , Proteína Forkhead Box O1/metabolismo
18.
Histopathology ; 82(5): 704-712, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36579383

RESUMO

AIMS: Breast phyllodes tumours (PTs) are a rare subset of fibroepithelial neoplasms categorised into benign, borderline, and malignant grades according to the World Health Organization (WHO) Classification of Tumours (WCTs). In this report, we developed an evidence gap map (EGM) based on the literature cited in the PT chapter of the 5th edition of the breast WCT in order to identify knowledge and research gaps in PT. METHODS: A framework was first established where the dimensions of the EGM were defined as categories of tumour descriptors, tumour types, and evidence levels. Citations were collected into a Microsoft Excel form and imported into EPPI-reviewer to produce the EGM. RESULTS: The EGM showed that the "Histopathology" and "Pathogenesis" sections contained the most citations, the majority being of low-level evidence. The highest number of citations considered of moderate-level evidence were found in the "Histopathology" section. There was no high-level evidence cited in this chapter. The "Localisation", "Aetiology", and "Staging" sections had the fewest citations. CONCLUSION: This EGM provides a visual representation of the cited literature in the PT chapter of the breast WCT, revealing the lack of high-level evidence citations. There is an uneven distribution of references, probably due to citation practices. Pockets of low-level evidence are highlighted, possibly related to referencing habits, lack of relevant research, or the belief that the information presented is standard accepted fact, without the need for specific citations. Future work needs to bridge evidence gaps and broaden citations beyond those in the latest WCT.


Assuntos
Neoplasias da Mama , Tumor Filoide , Humanos , Feminino , Tumor Filoide/patologia , Lacunas de Evidências , Mama/patologia , Organização Mundial da Saúde
19.
Neurochem Res ; 48(1): 54-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35999339

RESUMO

Ketogenic diets and medium-chain triglycerides are gaining attention as treatment of neurological disorders. Their major metabolites, ß-hydroxybutyrate (ßHB) and the medium-chain fatty acids (MCFAs) octanoic acid (C8) and decanoic acid (C10), are auxiliary brain fuels. To which extent these fuels compete for metabolism in different brain cell types is unknown. Here, we used acutely isolated mouse cerebral cortical slices to (1) compare metabolism of 200 µM [U-13C]C8, [U-13C]C10 and [U-13C]ßHB and (2) assess potential competition between metabolism of ßHB and MCFAs by quantifying metabolite 13C enrichment using gas chromatography-mass spectrometry (GC-MS) analysis. The 13C enrichment in most metabolites was similar with [U-13C]C8 and [U-13C]C10 as substrates, but several fold lower with [U-13C]ßHB. The 13C enrichment in glutamate was in a similar range for all three substrates, whereas the 13C enrichments in citrate and glutamine were markedly higher with both [U-13C]C8 and [U-13C]C10 compared with [U-13C]ßHB. As citrate and glutamine are indicators of astrocytic metabolism, the results indicate active MCFA metabolism in astrocytes, while ßHB is metabolized in a different cellular compartment. In competition experiments, 12C-ßHB altered 13C incorporation from [U-13C]C8 and [U-13C]C10 in only a few instances, while 12C-C8 and 12C-C10 only further decreased the low [U-13C]ßHB-derived 13C incorporation into citrate and glutamine, signifying little competition for oxidative metabolism between ßHB and the MCFAs. Overall, the data demonstrate that ßHB and MCFAs are supplementary fuels in different cellular compartments in the brain without notable competition. Thus, the use of medium-chain triglycerides in ketogenic diets is likely to be beneficial in conditions with carbon and energy shortages in both astrocytes and neurons, such as GLUT1 deficiency.


Assuntos
Ácidos Graxos , Glutamina , Animais , Camundongos , Ácido 3-Hidroxibutírico , Glutamina/metabolismo , Citratos , Triglicerídeos , Córtex Cerebral/metabolismo
20.
Pathogens ; 11(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558885

RESUMO

The elderly are understudied despite their high risk of tuberculosis (TB). We sought to identify factors underlying the lack of an association between TB and type 2 diabetes (T2D) in the elderly, but not adults. We conducted a case-control study in elderly (≥65 years old; ELD) vs. younger adults (young/middle-aged adults (18-44/45-64 years old; YA|MAA) stratified by TB and T2D, using a research study population (n = 1160) and TB surveillance data (n = 8783). In the research study population the adjusted odds ratio (AOR) of TB in T2D was highest in young adults (AOR 6.48) but waned with age becoming non-significant in the elderly. Findings were validated using TB surveillance data. T2D in the elderly (vs. T2D in younger individuals) was characterized by better glucose control (e.g., lower hyperglycemia or HbA1c), lower insulin resistance, more sulphonylureas use, and features of less inflammation (e.g., lower obesity, neutrophils, platelets, anti-inflammatory use). We posit that differences underlying glucose dysregulation and inflammation in elderly vs. younger adults with T2D, contribute to their differential association with TB. Studies in the elderly provide valuable insights into TB-T2D pathogenesis, e.g., here we identified insulin resistance as a novel candidate mechanism by which T2D may increase active TB risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...