Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982766

RESUMO

Cesium bismuth bromide (CBB) has garnered considerable attention as a vacancy-ordered layered perovskite with notable optoelectronic applications. However, its use as a light source has been limited due to its weak photoluminescence (PL). Here, we demonstrate metal intercalation as a novel approach to engineer the room-temperature PL of CBB using experimental and computational methods. Ag, when introduced into CBB, occupies vacant sites in the spacer region, forming octahedral coordination with surrounding Br anions. First-principles density functional theory calculations reveal that intercalated Ag represents the most energetically stable Ag species compared to other potential forms, such as Ag substituting Bi. The intercalated Ag forms a strong polaronic trap state close to the conduction band minimum and quickly captures photoexcited electrons with holes remaining in CBB layers, leading to the formation of a bound interlayer exciton, or BIE. The radiative recombination of this BIE exhibits bright room-temperature PL at 600 nm and a decay time of 38.6 ns, 35 times greater than that of free excitons, originating from the spatial separation of photocarriers by half a unit cell separation distance. The BIE as a new form of interlayer exciton is expected to inspire new research directions for vacancy-ordered perovskites.

2.
Biomedicines ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002093

RESUMO

In craniofacial research and routine dental clinical procedures, multifunctional materials with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional intelligent material. Over the last three decades, ILs have been explored for different biomedical applications due to their unique physical and chemical properties, high task specificity, and sustainability. Their stable physical and chemical characteristics and extremely low vapor pressure make them suitable for various applications. Their unique properties, such as density, viscosity, and hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance products, and restorative materials. They also serve as sensors for dental chairside usage to detect oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene maintenance, oral disease prevention, and antimicrobial materials. This review explores the different advantages and properties of ILs as possible dental material.

3.
J Am Geriatr Soc ; 70(10): 2805-2817, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35791806

RESUMO

BACKGROUND: In managing older adults with atrial fibrillation (AF), their symptomatology impacts their well-being and may inform treatment decision-making. We examined AF symptom perception, its impact on quality of life (QoL), and its relation to treatment strategies in older adults with AF. METHODS: Data were obtained from older adults with AF enrolled in a multicenter study conducted at clinic sites in Massachusetts and Georgia between 2016 and 2018. Participants were stratified into three age groups: 65-74 (youngest-old), 75-84 (middle-old), and ≥85 (oldest). Perception of AF symptoms was assessed by participant self-report during their clinic visit and at study enrollment by the Atrial Fibrillation Effect on Quality-of-Life Questionnaire which assessed cardiac-specific and non-specific, non-cardiac AF symptoms and their impact on QoL. Treatment strategies (rate or rhythm control) utilized were ascertained from electronic medical records. RESULTS: Among the 1184 participants (mean age 75 years, 48% women, 86% Non-Hispanic White), 51% were aged 65-74 years, 36% were 75-84 years, and 13% were ≥ 85 years. The most commonly reported AF symptoms were non-specific, non-cardiac symptoms (fatigue, dyspnea, lightheadedness) with similar prevalence and impact on QoL in all age groups. Cardiac-specific AF symptoms (palpitations, irregular heartbeat, pause in heart activity) were less prevalent, but most commonly reported by the youngest participants (65-74 years), who endorsed considerable impact of these symptoms on their QoL. Overall, those who reported experiencing any AF symptoms during their clinic visit were more likely to have received rhythm compared with rate control (OR: 1.56; 95% CI: 1.18-2.04) with similar findings for all age groups except those aged ≥85 years. CONCLUSIONS: Our findings suggest a high prevalence of non-specific, non-cardiac symptoms among older adults with AF and that cardiac-specific AF symptoms may exert considerable impact on their QoL. The presence of any AF symptoms may drive more rhythm control in a majority of older adults.


Assuntos
Fibrilação Atrial , Idoso , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/terapia , Feminino , Humanos , Masculino , Percepção , Qualidade de Vida , Autorrelato , Inquéritos e Questionários
4.
Langmuir ; 37(16): 5089-5097, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33856223

RESUMO

We report on the structure and dynamics of a Cu2+-complexed arachidic acid (AA) monolayer formed by Langmuir-Blodgett (LB) deposition. Infrared reflection-absorption spectroscopy (IRRAS) was used to characterize aliphatic chain -CH2 symmetric and asymmetric stretching modes and determine the chain tilt angle and order as a function of subphase pH. Monolayer structure is controlled by metal ion-amphiphile interactions. At low subphase pH (<5), film buckling at high surface pressure is observed, while for high subphase pH (≥5), monolayer buckling is not observed. This finding is correlated to monolayer structural mediation by metal ion-amphiphile interactions. Dynamics and mobility of a fluorophore incorporated into the monolayer were also affected by Cu2+-AA interactions, determined by fluorescence recovery after photobleaching (FRAP) measurements. These data are consistent with the formation of a rigid film due to Cu2+ coordination to AA headgroups, with the extent of headgroup protonation being determined by the pH of the subphase during monolayer deposition.


Assuntos
Espectrofotometria Infravermelho
5.
Langmuir ; 37(15): 4658-4665, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33827218

RESUMO

Self-assembled monolayers have been studied extensively due to their relative ease of synthesis and the broad range of applications for this class of materials. Monolayer-support interactions can range in strength from physisorption through covalent bond formation, with consequent variability in the robustness and fluidity of the monolayer. Monolayer-support bonding by metal ion complexation is especially attractive because of the ability to adjust the strength of interaction through metal ion identity. For such systems, both the exchange kinetics and thermodynamics of metal ion-complex formation contribute to the observed properties of the monolayer. We have synthesized metal-phosphate/phosphonate monolayers using Zr4+ and In3+ and have evaluated the metal ion dependence of monolayer dynamics for free and bound chromophores. Our findings reveal significant metal ion-dependent variations in monolayer dynamics and organization.

6.
Langmuir ; 37(2): 605-615, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33411540

RESUMO

Room temperature ionic liquids (RTILs) have a wide range of current and potential applications, in areas ranging from supercapacitor energy storage to sequestration of toxic gas phase species and use as reusable solvents for selected organic reactions. All these applications stem from their unique physical and chemical properties, which remain understood to only a limited extent. Among the issues of greatest importance is the extent to which RTILs exist as dissociated ionic species and the length scales over which some types of organizations are seen to exist in them. In this Invited Feature Article, we review the current understanding of organization in this family of materials, where opportunities lie in terms of deepening our understanding, and what potential applications would benefit from gaining such knowledge.

7.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641586

RESUMO

In diabetic dyslipidemia, cholesterol accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the ability of cells to transduce ligand-activated signaling pathways. Liver X receptors (LXRs) make up the main cellular mechanism by which intracellular cholesterol is regulated and play important roles in inflammation and disease pathogenesis. N, N-dimethyl-3ß-hydroxy-cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. In this study, we use a multisystem approach to understand the effects and molecular mechanisms of DMHCA treatment in type 2 diabetic (db/db) mice and human circulating angiogenic cells (CACs), which are hematopoietic progenitor cells with vascular reparative capacity. We found that DMHCA is sufficient to correct retinal and BM dysfunction in diabetes, thereby restoring retinal structure, function, and cholesterol homeostasis; rejuvenating membrane fluidity in CACs; hampering systemic inflammation; and correcting BM pathology. Using single-cell RNA sequencing on lineage-sca1+c-Kit+ (LSK) hematopoietic stem cells (HSCs) from untreated and DMHCA-treated diabetic mice, we provide potentially novel insights into hematopoiesis and reveal DMHCA's mechanism of action in correcting diabetic HSCs by reducing myeloidosis and increasing CACs and erythrocyte progenitors. Taken together, these findings demonstrate the beneficial effects of DMHCA treatment on diabetes-induced retinal and BM pathology.


Assuntos
Medula Óssea/efeitos dos fármacos , Ácidos Cólicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retina/efeitos dos fármacos , Animais , Medula Óssea/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Colesterol/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Receptores X do Fígado/metabolismo , Camundongos , Retina/patologia
8.
Langmuir ; 36(21): 5717-5729, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348147

RESUMO

This paper reports on how the surface chemistry of boron-doped nanocrystalline diamond (BDD) thin-film electrodes (H vs O) affects the wettability and electrochemical properties in two room-temperature ionic liquids (RTILs): [BMIM][PF6] and [HMIM][PF6]. Comparative measurements were made in 0.5 mol L-1 H2SO4. The BDD electrodes were modified by microwave or radio-frequency (RF) plasma treatment in H2 (H-BDD), Ar (Ar-BDD), or O2 (O-BDD). These modifications produced low-, medium-, and high-oxygen surface coverages. Atomic O/C ratios, as determined by X-ray photoelectron spectroscopy (XPS), were 0.01 for H-BDD, 0.08 for Ar-BDD, and 0.17 for O-BDD. The static contact angle of ultrapure water on the modified electrodes decreased from 110° (H-BDD) to 41° (O-BDD) with increasing surface oxygen coverage, as expected as the surface becomes more hydrophilic. Interestingly, the opposite trend was seen for both RTILs as the contact angle increased from 20° (H-BDD) to 50° (O-BDD) with increasing surface oxygen coverage. The cyclic voltammetric background current and potential-dependent capacitance in both RTILs were largest for BDD electrodes with the lowest O/C ratio (H-BDD) and smallest contact angle. Slightly larger voltammetric background currents and capacitance were observed in [HMIM][PF6] than in [BMIM][PF6]. Capacitance values ranged from 8 to 16 µF cm-2 over the potential range for H-BDD and from 4 to 6 µF cm-2 for O-BDD. The opposite trend was observed in H2SO4 as the voltammetric background current and capacitance were largest for BDD electrodes with the highest O/C ratio (O-BDD) and smallest contact angle. In summary, reducing the surface oxygen on BDD electrodes increases the wettability to two RTILs and this increases the voltammetric background current and capacitance.

9.
Langmuir ; 36(12): 3038-3045, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32148037

RESUMO

We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 µm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.

10.
J Vis Exp ; (144)2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30829320

RESUMO

The light reactions of photosynthesis are carried out by a series of pigmented protein complexes in the thylakoid membranes. The stoichiometry and organization of these complexes is highly dynamic on both long and short time scales due to processes that adapt photosynthesis to changing environmental conditions (i.e., non-photochemical quenching, state transitions, and the long-term response). Historically, these processes have been described spectroscopically in terms of changes in chlorophyll fluorescence, and spectroscopy remains a vital method for monitoring photosynthetic parameters. There are a limited number of ways in which the underlying protein complex dynamics can be visualized. Here we describe a fast and simple method for the high-resolution separation and visualization of thylakoid complexes, native green gel electrophoresis. This method is coupled with time-correlated single photon counting for detailed characterization of the chlorophyll fluorescence properties of bands separated on the green gel.


Assuntos
Clorofila/análise , Spinacia oleracea/química , Proteínas das Membranas dos Tilacoides/química , Eletroforese em Gel de Poliacrilamida Nativa , Fótons , Fotossíntese , Spinacia oleracea/metabolismo
11.
Diabetes ; 67(8): 1639-1649, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866771

RESUMO

Diabetic retinopathy (DR) is a microvascular complication of diabetes and is the leading cause of vision loss in working-age adults. Recent studies have implicated the complement system as a player in the development of vascular damage and progression of DR. However, the role and activation of the complement system in DR are not well understood. Exosomes, small vesicles that are secreted into the extracellular environment, have a cargo of complement proteins in plasma, suggesting that they can participate in causing the vascular damage associated with DR. We demonstrate that IgG-laden exosomes in plasma activate the classical complement pathway and that the quantity of these exosomes is increased in diabetes. Moreover, we show that a lack of IgG in exosomes in diabetic mice results in a reduction in retinal vascular damage. The results of this study demonstrate that complement activation by IgG-laden plasma exosomes could contribute to the development of DR.


Assuntos
Ativação do Complemento , Retinopatia Diabética/sangue , Exossomos/metabolismo , Imunoglobulina G/metabolismo , Microvasos/fisiopatologia , Retina/fisiopatologia , Vasos Retinianos/fisiopatologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Permeabilidade Capilar , Centrifugação com Gradiente de Concentração , Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/metabolismo , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/fisiopatologia , Progressão da Doença , Exossomos/imunologia , Exossomos/ultraestrutura , Imunoglobulina G/análise , Imunoglobulina G/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microvasos/imunologia , Microvasos/metabolismo , Microvasos/patologia , Retina/imunologia , Retina/metabolismo , Retina/patologia , Vasos Retinianos/imunologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Ultracentrifugação
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 195: 148-156, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414572

RESUMO

Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.


Assuntos
Cápsulas/química , Colo/efeitos dos fármacos , Corantes Fluorescentes/química , Magnetismo , Oxazinas/química , Polímeros/química , Sistema Respiratório/efeitos dos fármacos , Animais , Cápsulas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Oxazinas/administração & dosagem , Ratos , Ratos Wistar
13.
Langmuir ; 33(12): 2986-2992, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28267925

RESUMO

The translational diffusion dynamics of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at a planar phosphorylated support surface containing metal ions (Mg2+, Ca2+, Ba2+, Ni2+, Zn2+, Cd2+, Zr4+) was investigated using X-ray photoelectron spectroscopy (XPS) and fluorescence recovery after photobleaching (FRAP). Fluorescence recovery curves yielded diffusion constants on the order of 2-5 µm2/s for the chromophore-tagged 12:0 NBD-Lyso-PC. Ionic interactions between the zwitterionic headgroup and metal ions were found to play a secondary role in mediating lipid fluidity. This work provides quantitative insight into the extent to which the fluidity of a supported lipid film is mediated by the ionic interactions between headgroup and surface versus that of the lipid-lipid tailgroup interactions.


Assuntos
Metais Alcalinoterrosos/química , Metais Pesados/química , Fosfolipídeos/química , Termodinâmica , Difusão , Fluorescência , Estrutura Molecular , Espectroscopia Fotoeletrônica
15.
Langmuir ; 33(5): 1155-1161, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28094955

RESUMO

We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation. The LB films were characterized by their π-A isotherms and by Brewster angle microscopy (BAM) during formation and deposition. Chromophore mobility and monolayer structural heterogeneity were evaluated by comparing rotational diffusion data (fluorescence anisotropy decay imaging) and translational diffusion data (fluorescence recovery after photobleaching) on the same LB films. Our results indicate that the mobility of the chromophore depends sensitively on both metal ion identity and film composition.


Assuntos
Fluorocarbonos/química , Hidrocarbonetos/química , Dióxido de Silício/química , Ácidos Esteáricos/química , Difusão , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 18(36): 25210-25220, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711634

RESUMO

A new fluorescent conjugate (PNBD) with a structure of D-π-A was designed and synthesized, where the donor (D), the acceptor (A) and the bridge (π) are naphthalyl, dicyanovinyl and phenylethynyl-phenylethynyl, respectively. To improve the solubility of the conjugate, two long alkyl chains were introduced as substituents of the central aromatic ring. Spectroscopic studies demonstrated that PNBD is a strongly solvatochromic probe which is characterized by a large molar absorption coefficient (>32 000 cm-1 M-1), long wavelength absorption (>410 nm), large solvatochromic emission range (470-650 nm), high photochemical stability, and good solubility in common organic solvents. The fluorescent quantum yield of PNBD is limited in some polar solvents due to dual emission, a phenomenon ascribed to radiative decay from a higher excited singlet state. To eliminate dual emission, a covalently bound dimer (BPNBD) of PNBD characterized by weak vibronic coupling, was designed and synthesized. The dimer constituents are linked by a single bond between the naphthalyl moieties of the two PNBD monomers. As expected, BPNBD maintains almost all the strong points of the monomer, exhibits a substantial increase in fluorescence quantum yield, and eliminates dual emission by facilitating efficient internal conversion. Importantly, the use of PNBD and BPNBD in concert provides unprecedented discrimination among solvents of similar structures, such as (CH2Cl2, CHCl3, CCl4), (ethyl ether, THF, dioxane), or (methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol), allowing rapid and selective visual identification.

17.
Langmuir ; 32(37): 9507-12, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27563803

RESUMO

We report direct evidence for charge-induced long-range (ca. 100 µm) order in the room-temperature ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)), supported on a silica surface. We have measured the rotational diffusion dynamics of anionic, cationic, and neutral chromophores as a function of distance from a silica surface. The results reflect the excess charge density gradient induced in the IL by the (negative) charge present on the silica surface. Identical measurements in ethylene glycol reveal spatially invariant reorientation dynamics for all chromophores. Capping the silica support with Me2SiCl2 results in spatially invariant reorientation dynamics in the IL. We understand these data in the context of the IL exhibiting a spatially damped piezoelectric response mediated by IL fluidity and disorder.


Assuntos
Líquidos Iônicos/química , Temperatura , Polarização de Fluorescência , Dióxido de Silício/química
18.
J Mass Spectrom ; 51(1): 79-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26757075

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) ion formation mechanisms were investigated by comparison of isomers of dihydroxybenzoic acid (DHB). These exhibit substantially different MALDI performance, the basis for which was not previously understood. Luminescence decay curves are used here to estimate excited electronic state properties relevant for the coupled chemical and physical dynamics (CPCD) model. With these estimates, the CPCD predictions for relative total ion and analyte ion yields are in good agreement with the data for the DHB isomers. Predictions of a thermal equilibrium model were also compared and found to be incompatible with the data. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Gentisatos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isomerismo , Luminescência , Termodinâmica
19.
Stem Cells ; 34(4): 972-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676316

RESUMO

The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal endothelial cell damage, and inadequate vascular repair. This is partly due to the increased activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell populations in diabetes normalizes the reparative/proinflammatory cell balance and can be explored as a novel therapeutic strategy for treating diabetic retinopathy.


Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Retina/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Esfingomielina Fosfodiesterase/genética , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Ceramidas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/terapia , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Retina/metabolismo , Retina/patologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...