Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Res ; 45(3): 305-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24796378

RESUMO

AIM: Liver fibrosis occurs as a result of several chronic liver diseases and leads to portal hypertension, cirrhosis and liver failure, often requiring liver transplantation. Activated hepatic stellate cells (HSC) are known to contribute to liver fibrosis, but currently there are no effective therapies for the treatment of established liver fibrosis. Activation of the acidic sphingomyelinase (ASM) has been shown to be involved in HSC activation. In the present study we investigated whether treatment with the ASM inhibitor, amitriptyline (TCA), could prevent and/or reverse fibrosis induced in mice by carbon tetrachloride (CCl4 ). METHODS: Mice were treated with CCl4 for 8 weeks to induce fibrosis. Concurrently, mice received drinking water with or without 180 mg/L TCA. RESULTS: Mice receiving TCA in the water had decreased hepatic collagen deposition and reduced liver mRNA expression of the fibrogenic mediators, transforming growth factor (TGF)-ß1, tissue inhibitor of matrix metalloproteinase-1, collagen and tumor necrosis factor-α. TCA treatment also reduced HSC activation determined by α-smooth muscle actin staining. In a separate set of experiments, mice were treated with CCl4 for 5 weeks prior to treatment with TCA, to test whether TCA had any effect on established fibrosis. Remarkably, in mice with established fibrosis, treatment with TCA significantly reduced collagen deposition, HSC activation, and prevented portal hypertension and improved hepatic architecture. Treatment of isolated HSC in vitro with TCA completely inhibited TGF-ß1-induced collagen expression and platelet-derived growth factor-ß-ß-induced proliferation. CONCLUSION: The data suggest that ASM is a critical signaling component in HSC for the development of liver fibrosis and represents an important therapeutic target.

2.
Alcohol ; 31(1-2): 1-10, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14615005

RESUMO

Long-term ethanol exposure produces multiple neuroadaptations that likely contribute to dysregulation of Ca(2+) balance and neurotoxicity during ethanol withdrawal. Conversely, nicotine exposure may reduce the neurotoxic consequences of Ca(2+) dysregulation, putatively through up-regulation of the Ca(2+)-buffering protein calbindin-D(28k). The current studies were designed to examine the extent to which 10-day ethanol exposure and withdrawal altered calbindin-D(28k) expression in rat hippocampus. Further, in these studies, we examined the ability of nicotine, through action at alpha(7)(*)-bearing nicotinic acetylcholine receptors (nAChRs), to antagonize the effects of ethanol exposure on calbindin-D(28k) expression. Organotypic cultures of rat hippocampus were exposed to ethanol (50-100 mM) for 10 days. Additional cultures were exposed to 500 nM (-)-nicotine with or without the addition of 50 mM ethanol, 100 nM methyllycaconitine (an alpha(7)*-bearing nAChR antagonist), or both. Prolonged exposure to ethanol (>/=50 mM) produced significant reductions of calbindin-D(28k) immunolabeling in all regions of the hippocampal formation, even at nontoxic concentrations of ethanol. Calbindin-D(28k) expression levels returned to near-control levels after 72 h of withdrawal from 10-day ethanol exposure. Extended (-)-nicotine exposure produced significant elevations in calbindin-D(28k) expression levels that were prevented by methyllycaconitine co-exposure. Co-exposure of cultures to (-)-nicotine with ethanol resulted in an attenuation of ethanol-induced reductions in calbindin-D(28k) expression levels. These findings support the suggestion that long-term ethanol exposure reduces the neuronal capacity to buffer accumulated Ca(2+) in a reversible manner, an effect that likely contributes to withdrawal-induced neurotoxicity. Further, long-term exposure to (-)-nicotine enhances calbindin-D(28k) expression in an alpha(7)* nAChR-dependent manner and antagonizes the effects of ethanol on calbindin-D(28k) expression.


Assuntos
Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Nicotina/farmacologia , Proteína G de Ligação ao Cálcio S100/biossíntese , Animais , Calbindina 1 , Calbindinas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/fisiologia , Hipocampo/química , Hipocampo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteína G de Ligação ao Cálcio S100/análise , Síndrome de Abstinência a Substâncias/metabolismo
3.
Alcohol Clin Exp Res ; 27(11): 1724-35, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14634487

RESUMO

BACKGROUND: We recently reported that the sodium salt of acamprosate (Na-acamprosate) demonstrates the characteristics of an antagonist at metabotropic glutamate type 5 receptors (mGluR5s) rather than at N-methyl-d-aspartate receptors (NMDARs). Because mGluR5s are able to enhance the function of NMDARs, this interplay may be involved in the dysregulation of glutamatergic transmission during ethanol withdrawal. The following studies use organotypic hippocampal slice cultures at a mature age to investigate the potential for this interplay in the neurotoxicity associated with withdrawal from long-term ethanol exposure. METHODS: At 25 days in vitro, organotypic hippocampal slice cultures prepared from male and female 8-day-old rats were exposed to an initial concentration of 100 mM ethanol for 10 days before undergoing a 24-hr period of withdrawal. The effects of Na-acamprosate; 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a noncompetitive antagonist at mGluR5s; 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester, a noncompetitive antagonist at mGluR1s; dizocilpine (MK-801), a noncompetitive NMDAR antagonist; and staurosporine on the neurotoxicity induced by ethanol withdrawal were assessed by determining differences in propidium iodide uptake. Polypeptide levels of mGluR5s and the NR1 and NR2B subunits of NMDARs were also determined via Western blot analyses after 10 days of ethanol exposure. RESULTS: Significant neurotoxicity was always evident in the CA1 hippocampal region after a 24-hr withdrawal period. This spontaneous neurotoxicity resulted from intrinsic changes induced by the long-term presence of ethanol. Na-acamprosate (200-1000 microM), SIB-1893 (200-500 microM), MK-801 (20 microM), and staurosporine (200 nM) were all neuroprotective. The polypeptide levels of mGluR5s and NR1 and NR2B subunits of NMDARs were all increased after ethanol exposure; however, the increase in mGluR5s did not achieve statistical significance. CONCLUSIONS: From this model of long-term ethanol exposure and withdrawal, the functional interplay between mGluR5s and NMDARs might represent a novel target for the prevention of neurotoxicity associated with ethanol withdrawal.


Assuntos
Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Maleato de Dizocilpina/farmacologia , Feminino , Hipocampo/metabolismo , Masculino , N-Metilaspartato/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
4.
Alcohol Clin Exp Res ; 27(7): 1099-106, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12878916

RESUMO

BACKGROUND: Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N-methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. METHODS: Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1-100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 microM) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. RESULTS: Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC(50) = 14.9 nM), arcaine (IC(50) = 37.9 nM), agmatine (IC(50) = 41.5 nM), and DFMO (IC(50) = 0.6 nM). NMDA (5 microM) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. CONCLUSIONS: These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions.


Assuntos
Poliaminas Biogênicas/metabolismo , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
5.
Alcohol Clin Exp Res ; 26(12): 1779-93, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12500101

RESUMO

BACKGROUND: Several reported effects of acamprosate within the glutamatergic system could result from interactions with metabotropic glutamate receptors (mGluRs). The following experiments were performed to determine whether acamprosate could compete with trnas-ACPD (+/--1-aminocyclopentane-trans-1,3-dicarboxylic acid, an equimolecular mixture of 1S, 3R and 1R, 3S-ACPD and an agonist at both group I and group II mGluRs) sensitive binding sites and protect against trans-ACPD-induced neurotoxicity in organotypic hippocampal slice cultures. METHODS: A P2 membrane preparation of cortices, cerebellums, and hippocampi of adult, male Sprague Dawley rats was used to determine the abilities of N-methyl-D-aspartic acid (NMDA) and trans-ACPD to displace [3H]glutamate in both the absence and the presence of the sodium salt of acamprosate (sodium mono N-acetyl homotaurine or Na-acamprosate). A comparison of the effects of 100 microM guanosine 5'-triphosphate on unlabeled glutamate, trans-ACPD, and Na-acamprosate was performed in the same paradigm. For the neurotoxicity studies, organotypic hippocampal slice cultures from male and female 8-day-old neonatal rats were exposed to either 500 microM -ACPD or 50 microM NMDA for 24 hr in normal culture medium containing serum on day 20 in vitro. The effects of Na-acamprosate and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a noncompetitive antagonist at metabotropic type 5 receptors (mGluR5s), were assessed by determining differences in propidium iodide uptake as compared with neurotoxic challenges alone. RESULTS: Na-acamprosate displaced 31% of [3H]glutamate but did not compete with NMDA for [3H]glutamate binding sites. Na-acamprosate displayed total competition with trans-ACPD. The presence of 100 microM guanosine 5'-triphosphate differentially altered the displacing capabilities of the two mGluR agonists, unlabeled glutamate and trans-ACPD, as compared with Na-acamprosate. Na-acamprosate (200-1000 microM) and SIB-1893 (20-500 microM) both were neuroprotective against trans-ACPD induced neurotoxicity that likely results from mGluR potentiation of NMDARs. In turn, Na-acamprosate and SIB-1893 had no direct effects on NMDA-induced neurotoxicity. CONCLUSIONS: Na-acamprosate demonstrates the binding and functional characteristics that are consistent with a group I mGluR antagonist. The functional similarities between Na-acamprosate and SIB-1893 support an interaction of Na-acamprosate at mGluR5s. The neuroprotective properties of acamprosate and possibly its ability to reduce craving in alcohol-dependent patients may result from its alterations in glutamatergic transmission through mGluRs.


Assuntos
Cicloleucina/análogos & derivados , Cicloleucina/antagonistas & inibidores , Cicloleucina/toxicidade , Receptores de Glutamato Metabotrópico/metabolismo , Taurina/farmacologia , Acamprosato , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cicloleucina/metabolismo , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Taurina/análogos & derivados , Taurina/metabolismo
6.
Alcohol Clin Exp Res ; 26(10): 1468-78, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12394279

RESUMO

BACKGROUND: The antirelapse drug acamprosate has previously been reported to inhibit activating effects of polyamines on -methyl-D-aspartic acid receptor (NMDAR) function. Because increased synthesis of polyamines has been suggested as a mechanism for potentiation of NMDAR function during ethanol withdrawal, we evaluated the effects of acamprosate, MK-801, and ifenprodil in a cell culture model of ethanol withdrawal-induced neurotoxicity. METHODS: Organotypic hippocampal cultures from 8-day-old neonatal rats were maintained in vitro for 23 days before experimental use. The ethanol withdrawal model consisted of exposing cultures to ethanol (70-100 mM) for 4 days before being "withdrawn" into Calcium-Locke's buffer for 1 hr and then into minimal medium for 23 hr. Uptake of (45)CaCl(2) and propidium iodide by damaged cells was assessed 1 hr and 24 hr after the start of ethanol withdrawal, respectively. Additional studies examined effects of exposure to NMDA (50 microM) or spermidine (100 microM) on withdrawal-induced hippocampal damage. Last, these studies examined the ability of the sodium salt of acamprosate (Na-acamprosate, 200 microM), ifenprodil (50 microM), or MK-801 (30 microM) to inhibit neurotoxicity and (45)Ca(2+) entry produced by these insults. RESULTS: Ethanol withdrawal was associated with significantly greater toxicity and (45)Ca(2+) entry, relative to controls. Exposure to spermidine and NMDA during ethanol withdrawal further increased neurotoxicity and (45)Ca(2+) entry. Acamprosate, ifenprodil, and MK-801 almost completely prevented ethanol withdrawal-induced toxicity and (45)Ca(2+) entry. Acamprosate also reduced spermidine-induced neurotoxicity during ethanol withdrawal but was ineffective against NMDA-induced toxicity or (45)Ca(2+) entry at this time. CONCLUSIONS: The results support the contention that acamprosate, like ifenprodil, interacts with polyamines and that these compounds may be effective in reducing consequences of ethanol withdrawal. NMDAR activation is also strongly implicated in ethanol withdrawal neurotoxicity, but whether acamprosate causes any of these effects in this preparation directly via the NMDAR remains uncertain.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Piperidinas/farmacologia , Taurina/análogos & derivados , Taurina/farmacologia , Acamprosato , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/fisiologia , Maleato de Dizocilpina/uso terapêutico , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Taurina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA