Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38769744

RESUMO

Thermal performance curves (TPCs) provide a framework for understanding the effects of temperature on ectotherm performance and fitness. TPCs are often used to test hypotheses regarding local adaptation to temperature or to develop predictions for how organisms will respond to climate warming. However, for aquatic organisms such as fishes, most TPCs have been estimated for adult life stages, and little is known about the shape of TPCs or the potential for thermal adaptation at sensitive embryonic life stages. To examine how latitudinal gradients shape TPCs at early life stages in fishes, we used two populations of Fundulus heteroclitus that have been shown to exhibit latitudinal variation along the thermal cline as adults. We exposed embryos from both northern and southern populations and their reciprocal crosses to eight different temperatures (15°C, 18°C, 21°C, 24°C, 27°C, 30°C, 33°C, and 36°C) until hatch and examined the effects of developmental temperature on embryonic and larval traits (shape of TPCs, heart rate, and body size). We found that the pure southern embryos had a right-shifted TPC (higher thermal optimum (Topt) for developmental rate, survival, and embryonic growth rate) whereas pure northern embryos had a vertically shifted TPC (higher maximum performance (Pmax) for developmental rate). Differences across larval traits and cross-type were also found, such that northern crosses hatched faster and hatched at a smaller size compared to the pure southern population. Overall, these observed differences in embryonic and larval traits are consistent with patterns of both local adaptation and countergradient variation.

2.
Sci Rep ; 13(1): 15451, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723229

RESUMO

Heatwaves are increasing in frequency and severity, posing a significant threat to organisms globally. In aquatic environments heatwaves are often associated with low environmental oxygen, which is a deadly combination for fish. However, surprisingly little is known about the capacity of fishes to withstand these interacting stressors. This issue is particularly critical for species of extreme conservation concern such as sturgeon. We assessed the tolerance of juvenile white sturgeon from an endangered population to heatwave exposure and investigated how this exposure affects tolerance to additional acute stressors. We measured whole-animal thermal and hypoxic performance and underlying epigenetic and transcriptional mechanisms. Sturgeon exposed to a simulated heatwave had increased thermal tolerance and exhibited complete compensation for the effects of acute hypoxia. These changes were associated with an increase in mRNA levels involved in thermal and hypoxic stress (hsp90a, hsp90b, hsp70 and hif1a) following these stressors. Global DNA methylation was sensitive to heatwave exposure and rapidly responded to acute thermal and hypoxia stress over the course of an hour. These data demonstrate that juvenile white sturgeon exhibit substantial resilience to heatwaves, associated with improved cross-tolerance to additional acute stressors and involving rapid responses in both epigenetic and transcriptional mechanisms.


Assuntos
Metilação de DNA , Peixes , Animais , Epigênese Genética , Peixes/genética , Hipóxia/genética
3.
Conserv Physiol ; 11(1): coad032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228298

RESUMO

Climate change-induced warming effects are already evident in river ecosystems, and projected increases in temperature will continue to amplify stress on fish communities. In addition, many rivers globally are impacted by dams, which have many negative effects on fishes by altering flow, blocking fish passage, and changing sediment composition. However, in some systems, dams present an opportunity to manage river temperature through regulated releases of cooler water. For example, there is a government mandate for Kenney dam operators in the Nechako river, British Columbia, Canada, to maintain river temperature <20°C in July and August to protect migrating sockeye salmon (Oncorhynchus nerka). However, there is another endangered fish species inhabiting the same river, Nechako white sturgeon (Acipenser transmontanus), and it is unclear if these current temperature regulations, or timing of the regulations, are suitable for spawning and developing sturgeon. In this study, we aimed to identify upper thermal thresholds in white sturgeon embryos and larvae to investigate if exposure to current river temperatures are playing a role in recruitment failure. We incubated embryos and yolk-sac larvae in three environmentally relevant temperatures (14, 18 and 21°C) throughout development to identify thermal thresholds across different levels of biological organization. Our results demonstrate upper thermal thresholds at 21°C across physiological measurements in embryo and yolk-sac larvae white sturgeon. Before hatch, both embryo survival and metabolic rate were reduced at 21°C. After hatch, sublethal consequences continued at 21°C because larval sturgeon had decreased thermal plasticity and a dampened transcriptional response during development. In recent years, the Nechako river has reached 21°C by the end of June, and at this temperature, a decrease in sturgeon performance is evident in most of the traits measured. As such, the thermal thresholds identified here suggest current temperature regulations may not be suitable for developing white sturgeon and future recruitment.

4.
Biol Bull ; 243(2): 149-170, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548973

RESUMO

AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.


Assuntos
Aclimatação , Adaptação Fisiológica , Animais , Temperatura , Aclimatação/fisiologia , Peixes , Hipóxia , Mudança Climática
5.
Artigo em Inglês | MEDLINE | ID: mdl-35304270

RESUMO

Atlantic killifish, Fundulus heteroclitus, are intertidal marsh fish found along the east coast of North America. Associated with the thermal gradient along this coast, northern and southern killifish populations are known to differ in morphology, behavior, and physiology, including in their cortisol stress response. Our goal was to explore population differences in the stress response and identify underlying molecular mechanisms. We measured responses to both acute and repeated stress in plasma cortisol, stress axis mRNA expression, and body condition in northern and southern killifish. Following an acute stressor, the southern population had higher cortisol levels than the northern population but there was no difference between populations following repeated stress. In the brain, both corticotropin releasing factor and its binding protein had higher expression in the southern than the northern population, but the northern population showed more changes in mRNA levels following a stressor. In the head kidney, Melanocortin 2 Receptor and steroidogenic acute regulatory protein mRNA levels were higher in the southern population suggesting a larger capacity for cortisol synthesis than in the northern fish. Lastly, the glucocorticoid receptor GR1 mRNA levels were greater in the liver of southern fish, suggesting a greater capacity to respond to cortisol, and GR2 had differential expression in the head kidney, suggesting an interpopulation difference in stress axis negative feedback loops. Southern, but not northern, fish were able to maintain body condition following stress, suggesting that these differences in the stress response may be important for adaptation across latitudes.


Assuntos
Fundulidae , Aclimatação/fisiologia , Animais , Fundulidae/fisiologia , Expressão Gênica , Hidrocortisona , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
J Exp Biol ; 224(Pt 2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33328287

RESUMO

The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Genômica , Pele , Água
7.
Conserv Physiol ; 9(1): coab095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987825

RESUMO

Anthropogenic climate change threatens freshwater biodiversity and poses a challenge for fisheries management, as fish will increasingly be exposed to episodes of high temperature and low oxygen (hypoxia). Here, we examine the extent of variation in tolerance of acute exposure to these stressors within and among five strains of rainbow trout (Oncorhynchus mykiss) currently being used or under consideration for use in stocking programmes in British Columbia, Canada. We used incipient lethal oxygen saturation (ILOS) as an index of acute hypoxia tolerance, critical thermal maximum (CTmax) as an index of acute upper thermal tolerance and mortality following these two acute exposure trials to assess the relative resilience of individuals and strains to climate change-relevant stressors. We measured tolerance across two brood years and two life stages (fry and yearling), using a highly replicated design with hundreds of individuals per strain and life stage. There was substantial within-strain variation in CTmax and ILOS, but differences among strains, although statistically significant, were small. In contrast, there were large differences in post-trial mortality among strains, ranging from less than 2% mortality in the most resilient strain to 55% mortality in the least resilient. There was a statistically significant, but weak, correlation between CTmax and ILOS at both life stages for some strains, with thermally tolerant individuals tending to be hypoxia tolerant. These data indicate that alternative metrics of tolerance may result in different conclusions regarding resilience to climate change stressors, which has important implications for stocking and management decisions for fish conservation in a changing climate.

8.
J Exp Biol ; 222(Pt 2)2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30446543

RESUMO

Amphibious fishes have evolved multiple adaptive strategies for respiring out of water, but there has been less focus on reversible plasticity. We tested the hypothesis that when amphibious fishes leave water, enhanced respiratory performance on land is the result of rapid functional phenotypic flexibility of respiratory traits. We acclimated four isogenic strains of Kryptolebias marmoratus to air for 0, 1, 3 or 7 days. We compared respiratory performance out of water with traits linked to the O2 cascade. Aerial O2 consumption rate was measured over a step-wise decrease in O2 levels. There were significant differences between strains, but time out of water had the largest impact on measured parameters. Kryptolebiasmarmoratus had improved respiratory performance [lower aerial critical oxygen tension (Pcrit), higher regulation index (RI)] after only 1 day of air exposure, and these changes were strongly associated with the change in hematocrit and dorsal cutaneous angiogenesis. Additionally, we found that 1 h of air exposure induced the expression of four angiogenesis-associated genes - vegfa, angpt2, pecam-1 and efna1 - in the skin. After 7 days in air, respiratory traits were not significantly linked to the variation in either aerial Pcrit or RI. Overall, our data indicate that there are two phases involved in the enhancement of aerial respiration: an initial rapid response (1 day) and a delayed response (7 days). We found evidence for the hypothesis that respiratory performance on land in amphibious fishes is the result of rapid flexibility in both O2 uptake and O2 carrying capacity.


Assuntos
Variação Biológica Individual , Ciprinodontiformes/fisiologia , Ecossistema , Características de História de Vida , Fenótipo , Respiração , Animais , Fundulidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...