Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1275036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026847

RESUMO

Designing cell factories for the production of novel polyhydroxyalkanoates (PHAs) via smart metabolic engineering is key to obtain à la carte materials with tailored physicochemical properties. To this end, we used the model medium-chain-length-PHA producing bacterium, P. putida KT2440 as a chassis, which is characterized by its metabolic versatility and stress tolerance. Different PHA biosynthetic modules were assembled in expression plasmids using the Golden gate/MoClo modular assembly technique to implement an orthogonal short-chain-lengh-PHA (scl-PHA) switch in a "deaf" PHA mutant. This was specifically constructed to override endogenous multilevel regulation of PHA synthesis in the native strain. We generated a panel of engineered approaches carrying the genes from Rhodospirillum rubrum, Cupriavidus necator and Pseudomonas pseudoalcaligenes, demonstrating that diverse scl-PHAs can be constitutively produced in the chassis strain to varying yields from 23% to 84% PHA/CDW. Co-feeding assays of the most promising engineered strain harboring the PHA machinery from C. necator resulted to a panel of PHBV from 0.6% to 19% C5 monomeric incorporation. Chromosomally integrated PHA machineries with high PhaCCn synthase dosage successfully resulted in 68% PHA/CDW production. Interestingly, an inverse relationship between PhaC synthase dosage and granule size distribution was demonstrated in the heterologous host. In this vein, it is proposed the key involvement of inclusion body protein IbpA to the heterologous production of tailored PHA in P. putida KT2440.

2.
Int J Biol Macromol ; 253(Pt 2): 126760, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683751

RESUMO

Biodegradable polyesters, such as polyhydroxyalkanoates (PHAs), are having a tremendous impact on biomedicine. However, these polymers lack functional moieties to impart functions like targeted delivery of molecules. Inspired by native GAPs, such as phasins and their polymer-binding and surfactant properties, we generated small material binding peptides (MBPs) for polyester surface functionalization using a rational approach based on amphiphilicity. Here, two peptides of 48 amino acids derived from phasins PhaF and PhaI from Pseudomonas putida, MinP and the novel-designed MinI, were assessed for their binding towards two types of PHAs, PHB and PHOH. In vivo, fluorescence studies revealed selective binding towards PHOH, whilst in vitro binding experiments using the Langmuir-Blodgett technique coupled to ellipsometry showed KD in the range of nM for all polymers and MBPs. Marked morphological changes of the polymer surface upon peptide adsorption were shown by BAM and AFM for PHOH. Moreover, both MBPs were successfully used to immobilize cargo proteins on the polymer surfaces. Altogether, this work shows that by redesigning the amphiphilicity of phasins, a high affinity but lower specificity to polyesters can be achieved in vitro. Furthermore, the MBPs demonstrated binding to PET, showing potential to bind cargo molecules also to synthetic polyesters.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Poliésteres/metabolismo , Proteínas de Bactérias/química , Poli-Hidroxialcanoatos/química , Peptídeos/metabolismo , Pseudomonas putida/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1220336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449090

RESUMO

Polymeric nanoparticles (NPs) present some ideal properties as biomedical nanocarriers for targeted drug delivery such as enhanced translocation through body barriers. Biopolymers, such as polyhydroxyalkanoates (PHAs) are gaining attention as nanocarrier biomaterials due to their inherent biocompatibility, biodegradability, and ability to be vehiculized through hydrophobic media, such as the lung surfactant (LS). Upon colonization of the lung alveoli, below the LS layer, Streptococcus pneumoniae, causes community-acquired pneumonia, a severe respiratory condition. In this work, we convert PHA NPs into an antimicrobial material by the immobilization of an enzybiotic, an antimicrobial enzyme, via a minimal PHA affinity tag. We first produced the fusion protein M711, comprising the minimized PHA affinity tag, MinP, and the enzybiotic Cpl-711, which specifically targets S. pneumoniae. Then, a PHA nanoparticulate suspension with adequate physicochemical properties for pulmonary delivery was formulated, and NPs were decorated with M711. Finally, we assessed the antipneumococcal activity of the nanosystem against planktonic and biofilm forms of S. pneumoniae. The resulting system displayed sustained antimicrobial activity against both, free and sessile cells, confirming that tag-mediated immobilization of enzybiotics on PHAs is a promising platform for bioactive antimicrobial functionalization.

4.
Crit Rev Anal Chem ; 53(4): 825-837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34605329

RESUMO

There is an ever-growing interest in metabolomic profiling using noninvasive, real-time techniques that avoid sample manipulation and are painless for the patients. In this context, breath analysis is gaining much attention, and several ionization techniques have been developed to get insights in real-time into metabolic status by analyzing breath through mass spectrometry, such as Proton transfer reaction mass spectrometry (PTR-MS), Selected ion flow tube mass spectrometry (SIFT-MS), and Secondary electrospray ionization mass spectrometry (SESI-MS). SESI-MS is the most recently developed analytical platform displaying particular adequate characteristics for breath analysis, such as the low detection limits, and the detection of low volatility species, which tend to present a higher biological significance. Here, we review the SESI technology development, the different SESI configurations developed, and the standardization procedures described to translate SESI into the clinical environment. Finally, SESI main applications described in the literature with prompt translation into the clinical environment, namely, biomarker discovery or pharmacokinetics and drug monitoring are revised.


Assuntos
Testes Respiratórios , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes Respiratórios/métodos , Metabolômica/métodos
5.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200068

RESUMO

Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.

6.
Int J Biol Macromol ; 162: 1869-1879, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777414

RESUMO

Polymeric hydrogels from bacterial cellulose (BC) have been widely used for the development of wound dressings due to its water holding capacity, its high tensile strength and flexibility, its permeability to gases and liquids, but lacks antibacterial activity. In this work, we have developed novel antimicrobial hydrogels composed of BC and the antimicrobial poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate) (PHACOS). Hydrogels based on different PHACOS contents (20 and 50 wt%) were generated and analysed through different techniques (IR, DSC, TGA, rheology, SEM and EDX) and their bactericidal activity was studied against Staphylococcus aureus. PHACOS20 (BC 80%-PHACOS 20%) hydrogel shows mechanical and thermal properties in the range of human skin and anti-staphylococcal activity (kills 1.8 logs) demonstrating a huge potential for wound healing applications. Furthermore, the cytotoxicity assay using fibroblast cells showed that it keeps cell viability over 85% in all the cases after seven days.


Assuntos
Bandagens , Celulose/farmacologia , Hidrogéis/farmacologia , Poliésteres/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Pele/efeitos dos fármacos , Cicatrização , Antibacterianos/farmacologia , Caprilatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias Humanas , Humanos , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos
7.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303541

RESUMO

Phasin PhaF from Pseudomonas putida consists of a modular protein whose N-terminal domain (BioF) has been demonstrated to be responsible for binding to the polyhydroxyalkanoate (PHA) granule. BioF has been exploited for biotechnological purposes as an affinity tag in the functionalization of PHA beads with fusion proteins both in vivo and in vitro The structural model of this domain suggests an amphipathic α-helical conformation with the hydrophobic residues facing the PHA granule. In this work, we analyzed the mean hydrophobicity and the hydrophobic moment of the native BioF tag to rationally design shorter versions that maintain affinity for the granule. Hybrid proteins containing the green fluorescent protein (GFP) fused to the BioF derivatives were studied for in vivo localization on PHA, stability on the surface of the PHA granule against pH, temperature, and ionic strength, and their possible influence on PHA synthesis. Based on the results obtained, a minimized BioF tag for PHA functionalization has been proposed (MinP) that retains similar binding properties but possesses an attractive biotechnological potential derived from its reduced size. The MinP tag was further validated by analyzing the functionality and stability of the fusion proteins MinP-ß-galactosidase and MinP-CueO from Escherichia coliIMPORTANCE Polyhydroxyalkanoates (PHAs) are biocompatible, nontoxic, and biodegradable biopolymers with exceptional applications in the industrial and medical fields. The complex structure of the PHA granule can be exploited as a toolbox to display molecules of interest on their surface. Phasins, the most abundant group of proteins on the granule, have been employed as anchoring tags to obtain functionalized PHA beads for high-affinity bioseparation, enzyme immobilization, diagnostics, or cell targeting. Here, a shorter module based on the previously designed BioF tag has been demonstrated to maintain the affinity for the PHA granule, with higher stability and similar functionalization efficiency. The use of a 67% shorter peptide, which maintains the binding properties of the entire protein, constitutes an advantage for the immobilization of recombinant proteins on the PHA surface both in vitro and in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Biotecnologia , Enzimas Imobilizadas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...