Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 180: 1-17, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604468

RESUMO

This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.


Assuntos
Nanomedicina , Humanos , Vacinas de DNA/efeitos adversos
2.
Foods ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496557

RESUMO

Microalgae are described as a new source of a wide range of bioactive compounds with health-promoting properties, such as omega-3 lipids. This biomass product is gaining attention mainly due to its potential to accumulate different compounds depending on the species and environment, and it has been commonly recognized as a valuable nutraceutical alternative to fish and krill oils. In this work, we obtained the extract of the microalga Nannochloropsis gaditana, selected on the basis of its content of eicosapentaenoic acid (EPA) and glycolipids, which were determined using GC-MS and high-performance liquid chromatography (HPLC), respectively. To develop an oral formulation for the delivery of the extract, we used a 23 factorial design approach to obtain an optimal lipid nanoparticle formulation. The surfactant and solid lipid content were set as the independent variables, while the particle size, polydispersity index, and zeta potential were taken as the dependent variables of the design. To ensure the potential use of the optimum LN formulation to protect and modify the release of the loaded microalga extract, rheological and differential scanning calorimetry analyses were carried out. The developed formulations were found to be stable over 30 days, with an encapsulation efficiency over 60%.

3.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233066

RESUMO

Damage to the retinal pigment epithelium, Bruch's membrane and/or tissues underlying macula is known to increase the risk of age-related macular degeneration (AMD). AMD is commonly categorized in two distinct types, namely, the nonexudative (dry form) and the exudative (wet form). Currently, there is no ideal treatment available for AMD. Recommended standard treatments are based on the use of vascular endothelial growth factor (VEGF), with the disadvantage of requiring repeated intravitreal injections which hinder patient's compliance to the therapy. In recent years, several synthetic and natural active compounds have been proposed as innovative therapeutic strategies against this disease. There is a growing interest in the development of formulations based on nanotechnology because of its important role in the management of posterior eye segment disorders, without the use of intravitreal injections, and furthermore, with the potential to prolong drug release and thus reduce adverse effects. In the same way, 3D bioprinting constitutes an alternative to regeneration therapies for the human retina to restore its functions. The application of 3D bioprinting may change the current and future perspectives of the treatment of patients with AMD, especially those who do not respond to conventional treatment. To monitor the progress of AMD treatment and disease, retinal images are used. In this work, we revised the recent challenges encountered in the treatment of different forms of AMD, innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress.


Assuntos
Macula Lutea , Degeneração Macular , Lâmina Basilar da Corioide , Humanos , Macula Lutea/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Foods ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954085

RESUMO

Nutraceuticals have gained increasing attention over the last years due to their potential value as therapeutic compounds formulated from natural sources. For instance, there is a wide range of literature about the cardioprotective properties of omega-3 lipids and the antioxidant value of some phenolic compounds, which are related to antitumoral activity. However, the value of nutraceuticals can be limited by their instability under gastric pH and intestinal fluids, their low solubility and absorption. That is why encapsulation is a crucial step in nutraceutical design. In fact, pharmaceutical nanotechnology improves nutraceutical stability and bioavailability through the design and production of efficient nanoparticles (NPs). Lipid nanoparticles protect the bioactive compounds from light and external damage, including the gastric and intestinal conditions, providing a retarded delivery in the target area and guaranteeing the expected therapeutic effect of the nutraceutical. This review will focus on the key aspects of the encapsulation of bioactive compounds into lipid nanoparticles, exploring the pharmaceutical production methods available for the synthesis of NPs containing nutraceuticals. Moreover, the most common nutraceuticals will be discussed, considering the bioactive compounds, their natural source and the described biological properties.

5.
Front Bioeng Biotechnol ; 9: 794672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957082

RESUMO

Carrier-free immobilization is a key process to develop efficient biocatalysts able to catalyze the cell wall degradation in microalgae where the traditional solid supports cannot penetrate. Thus, the insolubilization of commercial Celluclast®, Alcalase®, and Viscozyme® enzymes by carrier-free immobilization and their application in microalgae pretreatment was investigated. In this study, different precipitants at different ratios (ethanol, acetone, and polyethylene glycol 4000) were tested in the first part of the method, to establish the precipitation conditions. The screening of the best precipitant is needed as it depends on the nature of the enzyme. The best results were studied in terms of immobilization yield, thermal stability, and residual activity and were analyzed using scanning electron microscopy. Moreover, a novel strategy was intended including the three enzymes (combi-CLEAs) to catalyze the enzymatic degradation of Nannochloropsis gaditana microalgal cell wall in one pot. The carrier-free immobilized derivatives were 10 times more stable compared to soluble enzymes under the same. At the best conditions showed its usefulness in the pretreatment of microalgae combined with ultrasounds, facilitating the cell disruption and lipid recovery. The results obtained suggested the powerful application of these robust biocatalysts with great catalytic properties on novel and sustainable biomass such as microalgae to achieve cost-effective and green process to extract valuable bioactive compounds.

6.
Foods ; 10(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34441705

RESUMO

Microalgal biomass is a sustainable source of bioactive lipids with omega-3 fatty acids. The efficient extraction of neutral and polar lipids from microalgae requires alternative extraction methods, frequently combined with biomass pretreatment. In this work, a combined ultrasound and enzymatic process using commercial enzymes Viscozyme, Celluclast, and Alcalase was optimized as a pretreatment method for Nannochloropsis gaditana, where the Folch method was used for lipid extraction. Significant differences were observed among the used enzymatic pretreatments, combined with ultrasound bath or probe-type sonication. To further optimize this method, ranges of temperatures (35, 45, and 55 °C) and pH (4, 5, and 8) were tested, and enzymes were combined at the best conditions. Subsequently, simultaneous use of three hydrolytic enzymes rendered oil yields of nearly 29%, showing a synergic effect. To compare enzymatic pretreatments, neutral and polar lipids distribution of Nannochloropsis was determined by HPLC-ELSD. The highest polar lipids content was achieved employing ultrasound-assisted enzymatic pretreatment (55 °C and 6 h), whereas the highest glycolipid (44.54%) and PE (2.91%) contents were achieved using Viscozyme versus other enzymes. The method was applied to other microalgae showing the potential of the optimized process as a practical alternative to produce valuable lipids for nutraceutical applications.

7.
Mar Drugs ; 19(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673060

RESUMO

To develop greener extraction alternatives for microalgae biomass, ultrasound assisted extraction (UAE) and pressurized liquid extraction (PLE) with different biobased solvents were investigated, demonstrating that both techniques are useful alternatives for algal lipid extraction. Specifically, Nannochloropsis gaditana lipids were extracted by UAE and PLE at different temperatures and extraction times with sustainable solvents like 2-Methyltetrahydrofuran (2-MeTHF) and its mixtures with ethanol and other alcohols. The best oil yields for both PLE and UAE of N. gaditana were achieved with the mixture of 2-MeTHF:ethanol (1:3), reaching yields of up to 16.3%, for UAE at 50 °C and up to 46.1% for PLE at 120 °C. Lipid composition of the extracts was analyzed by HPLC-ELSD and by GC-MS to determine lipid species and fatty acid profile, respectively. Different fractionation of lipid species was achieved with PLE and solvent mixtures of different polarity. Thus, for the extraction of glycolipids, ethanolic extracts contained higher amounts of glycolipids and EPA, probably due to the higher polarity of the solvent. The optimized method was applied to microalgae Isochrysis galbana and Tetraselmis chuii showing the potential of mixtures of biobased solvents like 2-methyl-THF and ethanol in different proportions to efficiently extract and fractionate lipids from microalgal biomass.


Assuntos
Ácidos Graxos Ômega-3/isolamento & purificação , Lipídeos/isolamento & purificação , Microalgas/metabolismo , Estramenópilas/metabolismo , Biomassa , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Etanol/química , Cromatografia Gasosa-Espectrometria de Massas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...