Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 61(4): 1328-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658256

RESUMO

Although a number of methods have been proposed for T-Wave Alternans (TWA) detection and estimation, their performance strongly depends on their signal processing stages and on their free parameters tuning. The dependence of the system quality with respect to the main signal processing stages in TWA algorithms has not yet been studied. This study seeks to optimize the final performance of the system by successive comparisons of pairs of TWA analysis systems, with one single processing difference between them. For this purpose, a set of decision statistics are proposed to evaluate the performance, and a nonparametric hypothesis test (from Bootstrap resampling) is used to make systematic decisions. Both the temporal method (TM) and the spectral method (SM) are analyzed in this study. The experiments were carried out in two datasets: first, in semisynthetic signals with artificial alternant waves and added noise; second, in two public Holter databases with different documented risk of sudden cardiac death. For semisynthetic signals (SNR = 15 dB), after the optimization procedure, a reduction of 34.0% (TM) and 5.2% (SM) of the power of TWA amplitude estimation errors was achieved, and the power of error probability was reduced by 74.7% (SM). For Holter databases, appropriate tuning of several processing blocks, led to a larger intergroup separation between the two populations for TWA amplitude estimation. Our proposal can be used as a systematic procedure for signal processing block optimization in TWA algorithmic implementations.


Assuntos
Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
2.
Ann Biomed Eng ; 38(8): 2716-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20517648

RESUMO

The detection of murmurs from phonocardiographic recordings is an interesting problem that has been addressed before using a wide variety of techniques. In this context, this article explores the capabilities of an enhanced time-frequency representation (TFR) based on a time-varying autoregressive model. The parametric technique is used to compute the TFR of the signal, which serves as a complete characterization of the process. Parametric TFRs contain a large quantity of data, including redundant and irrelevant information. In order to extract the most relevant features from TFRs, two specific approaches for dimensionality reduction are presented: feature extraction by linear decomposition, and tiling partition of the t-f plane. In the first approach, the feature extraction was carried out by means of eigenplane-based PCA and PLS techniques. Likewise, a regular partition and a refined Quadtree partition of the t-f plane were tested for the tiled-TFR approach. As a result, the feature extraction methodology presented, which searches for the most relevant information immersed on the TFR, has demonstrated to be very effective. The features extracted were used to feed a simple k-nn classifier. The experiments were carried out using 45 phonocardiographic recordings (26 normal and 19 records with murmurs), segmented to extract 548 representative individual beats. The results using these methods point out that better accuracy and flexibility can be accomplished to represent non-stationary PCG signals, showing evidences of improvement with respect to other approaches found in the literature. The best accuracy obtained was 99.06 +/- 0.06%, evidencing high performance and stability. Because of its effectiveness and simplicity of implementation, the proposed methodology can be used as a simple diagnostic tool for primary health-care purposes.


Assuntos
Sopros Cardíacos/diagnóstico , Sopros Cardíacos/fisiopatologia , Humanos , Análise dos Mínimos Quadrados , Modelos Logísticos , Fonocardiografia/métodos , Análise de Componente Principal , Fatores de Tempo
3.
Ann Biomed Eng ; 38(1): 118-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19921435

RESUMO

This work discusses a method for the selection of dynamic features, based on the calculation of the spectral power through time applied to the detection of systolic murmurs from phonocardiographic recordings. To investigate the dynamic properties of the spectral power during murmurs, several quadratic energy distributions have been studied, namely Wigner-Ville, Choi-Williams, smoothed pseudo Wigner-Ville, exponential, and hyperbolic T-distribution. The classification performance has been compared with that using a Short Time Fourier Transform and Continuous Wavelet Transform representations. Furthermore, this work discusses a variety of nonparametric techniques to estimate the spectral power contours as dynamic features that characterize the heart sounds (HS): instantaneous energy, eigenvectors, instantaneous frequency, equivalent bandwidth, subband spectral centroids, and Mel cepstral coefficients. In this way, the aforementioned time-frequency representations and their dynamic features were evaluated by means of their ability to detect the presence of murmurs using a simple k-Nearest Neighbors classifier. Moreover, the relevancies of the proposed dynamic features have been evaluated using a time-varying principal component analysis. The work presented is carried out using a database containing 22 phonocardiographic recordings (16 normal and 6 records with murmurs), segmented to extract 402 representative individual beats (201 per class). The results suggest that the smoothing given by the quadratic energy distribution significantly improves the classification performance for the detection of murmurs in HS. Moreover, it is shown that the power dynamic features which give the best overall classification performance are the MFCC contours. As a result, the proposed method can be implemented as a simple diagnostic tool for primary health-care purposes with high accuracy (up to 98%) discriminating between normal and pathologic beats.


Assuntos
Sopros Cardíacos/fisiopatologia , Modelos Cardiovasculares , Fonocardiografia/métodos , Análise de Fourier , Humanos
4.
Ann Biomed Eng ; 37(2): 337-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19048376

RESUMO

This work presents a comparison of different approaches for the detection of murmurs from phonocardiographic signals. Taking into account the variability of the phonocardiographic signals induced by valve disorders, three families of features were analyzed: (a) time-varying & time-frequency features; (b) perceptual; and (c) fractal features. With the aim of improving the performance of the system, the accuracy of the system was tested using several combinations of the aforementioned families of parameters. In the second stage, the main components extracted from each family were combined together with the goal of improving the accuracy of the system. The contribution of each family of features extracted was evaluated by means of a simple k-nearest neighbors classifier, showing that fractal features provide the best accuracy (97.17%), followed by time-varying & time-frequency (95.28%), and perceptual features (88.7%). However, an accuracy around 94% can be reached just by using the two main features of the fractal family; therefore, considering the difficulties related to the automatic intrabeat segmentation needed for spectral and perceptual features, this scheme becomes an interesting alternative. The conclusion is that fractal type features were the most robust family of parameters (in the sense of accuracy vs. computational load) for the automatic detection of murmurs. This work was carried out using a database that contains 164 phonocardiographic recordings (81 normal and 83 records with murmurs). The database was segmented to extract 360 representative individual beats (180 per class).


Assuntos
Algoritmos , Sopros Cardíacos/fisiopatologia , Diástole/fisiologia , Humanos , Fonocardiografia/métodos , Sístole/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...