Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077319

RESUMO

RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.


Assuntos
Proteínas de Arabidopsis , Sinapis , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Plastídeos/metabolismo , Proteômica , Sinapis/metabolismo
2.
J Exp Bot ; 73(21): 7105-7125, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36002302

RESUMO

Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.


Assuntos
Genomas de Plastídeos , Plastídeos , Cloroplastos , Proteínas de Cloroplastos , Fotossíntese
3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328480

RESUMO

Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into a larger complex by the addition of nuclear-encoded PEP-associated proteins (PAP1 to PAP12). Among the PAPs, some have been detected in the nucleus (PAP5 and PAP8), where they could serve a nuclear function required for efficient chloroplast biogenesis. Here, we detected PAP8 in a large nuclear subcomplex that may include other subunits of the plastid-encoded RNA polymerase. We have made use of PAP8 recombinant proteins in Arabidopsis thaliana to decouple its nucleus- and chloroplast-associated functions and found hypomorphic mutants pointing at essential amino acids. While the origin of the PAP8 gene remained elusive, we have found in its sequence a micro-homologous domain located within a large structural homology with a rhinoviral RNA-dependent RNA polymerase, highlighting potential RNA recognition motifs in PAP8. PAP8 in vitro RNA binding activity suggests that this domain is functional. Hence, we propose that the acquisition of PAPs may have occurred during evolution by different routes, including lateral gene transfer.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Nucleares/genética , Plastídeos/metabolismo , Motivo de Reconhecimento de RNA
4.
Front Plant Sci ; 12: 668897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276730

RESUMO

In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs). Among them, there are two iron superoxide dismutases, FSD2/PAP9 and FSD3/PAP4. Superoxide dismutases usually are soluble enzymes not bound into larger protein complexes. To investigate this unusual feature, we characterized PAP9 using molecular genetics, fluorescence microscopy, mass spectrometry, X-ray diffraction, and solution-state NMR. Despite the presence of a predicted nuclear localization signal within the sequence of the predicted chloroplast transit peptide, PAP9 was mainly observed within plastids. Mass spectrometry experiments with the recombinant Arabidopsis PAP9 suggested that monomers and dimers of PAP9 could be associated to the PEP complex. In crystals, PAP9 occurred as a dimeric enzyme that displayed a similar fold to that of the FeSODs or manganese SOD (MnSODs). A zinc ion, instead of the expected iron, was found to be penta-coordinated with a trigonal-bipyramidal geometry in the catalytic center of the recombinant protein. The metal coordination involves a water molecule and highly conserved residues in FeSODs. Solution-state NMR and DOSY experiments revealed an unfolded C-terminal 34 amino-acid stretch in the stand-alone protein and few internal residues interacting with the rest of the protein. We hypothesize that this C-terminal extension had appeared during evolution as a distinct feature of the FSD2/PAP9 targeting it to the PEP complex. Close vicinity to the transcriptional apparatus may allow for the protection against the strongly oxidizing aerial environment during plant conquering of terrestrial habitats.

5.
EMBO J ; 39(22): e104941, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33001465

RESUMO

The initial greening of angiosperms involves light activation of photoreceptors that trigger photomorphogenesis, followed by the development of chloroplasts. In these semi-autonomous organelles, construction of the photosynthetic apparatus depends on the coordination of nuclear and plastid gene expression. Here, we show that the expression of PAP8, an essential subunit of the plastid-encoded RNA polymerase (PEP) in Arabidopsis thaliana, is under the control of a regulatory element recognized by the photomorphogenic factor HY5. PAP8 protein is localized and active in both plastids and the nucleus, and particularly required for the formation of late photobodies. In the pap8 albino mutant, phytochrome-mediated signalling is altered, degradation of the chloroplast development repressors PIF1/PIF3 is disrupted, HY5 is not stabilized, and the expression of the photomorphogenesis regulator GLK1 is impaired. PAP8 translocates into plastids via its targeting pre-sequence, interacts with the PEP and eventually reaches the nucleus, where it can interact with another PEP subunit pTAC12/HMR/PAP5. Since PAP8 is required for the phytochrome B-mediated signalling cascade and the reshaping of the PEP activity, it may coordinate nuclear gene expression with PEP-driven chloroplastic gene expression during chloroplast biogenesis.


Assuntos
Fosfatase Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Morfogênese/fisiologia , Plastídeos/genética , Plastídeos/metabolismo , Fosfatase Ácida/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Biogênese de Organelas , Fitocromo/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição , Transcrição Gênica
6.
Methods Mol Biol ; 1829: 253-271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987727

RESUMO

Plastids of plant and algae cells are of endosymbiotic origin. They possess their own genome and a sophisticated protein machinery to express it. Studies over the recent years uncovered that the regulation of plastid gene expression is highly complex involving a multiplicity of regulatory protein factors that are mostly imported from the cytosol. Proper expression of the chloroplast genome in coordination with nuclear genome was found to be absolutely essential for efficient growth and development of plants especially during early steps of photomorphogenesis, but also at later stages of the plant life cycle. Protein factors being responsible for such essential steps, therefore, are highly interesting for fundamental science as well as for industrial applications targeting crop improvement and yield increase. Nevertheless, many proteins involved in regulation of plastid gene expression are still unidentified and/or uncharacterized. This asks for appropriate methods to analyze this special subproteome. Here, we describe suitable methods that proved to be successful in the analysis of the plastid subproteome of DNA/RNA-binding proteins.


Assuntos
Cloroplastos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plastídeos/metabolismo , Proteoma , Proteômica , Proteínas de Ligação a RNA/metabolismo , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteômica/métodos
7.
Planta ; 248(3): 629-646, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29855700

RESUMO

MAIN CONCLUSION: Expression of PAP genes is strongly coordinated and represents a highly selective cell-specific marker associated with the development of chloroplasts in photosynthetically active organs of Arabidopsis seedlings and adult plants. Transcription in plastids of plants depends on the activity of phage-type single-subunit nuclear-encoded RNA polymerases (NEP) and a prokaryotic multi-subunit plastid-encoded RNA polymerase (PEP). PEP is comprised of the core subunits α, ß, ß' and ß″ encoded by rpoA, rpoB/C1/C2 genes located on the plastome. This core enzyme needs to interact with nuclear-encoded sigma factors for proper promoter recognition. In chloroplasts, the core enzyme is surrounded by additional 12 nuclear-encoded subunits, all of eukaryotic origin. These PEP-associated proteins (PAPs) were found to be essential for chloroplast biogenesis as Arabidopsis inactivation mutants for each of them revealed albino or pale-green phenotypes. In silico analysis of transcriptomic data suggests that PAP genes represent a tightly controlled regulon, whereas wetlab data are sparse and correspond to the expression of individual genes mostly studied at the seedling stage. Using RT-PCR, transient, and stable expression assays of PAP promoter-GUS-constructs, we do provide, in this study, a comprehensive expression catalogue for PAP genes throughout the life cycle of Arabidopsis. We demonstrate a selective impact of light on PAP gene expression and uncover a high tissue specificity that is coupled to developmental progression especially during the transition from skotomorphogenesis to photomorphogenesis. Our data imply that PAP gene expression precedes the formation of chloroplasts rendering PAP genes a tissue- and cell-specific marker of chloroplast biogenesis.


Assuntos
Cloroplastos/genética , Genes de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Marcadores Genéticos/genética , Cebolas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Plant Physiol ; 175(3): 1203-1219, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935841

RESUMO

Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the pap7-1 mutant of Arabidopsis (Arabidopsis thaliana). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown pap7-1 mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in pap7-1 mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Cloroplastos/genética , Genes de Plantas , Luz , Metiltransferases/genética , Mutação/genética , Plastídeos/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Redes Reguladoras de Genes , Modelos Biológicos , Morfogênese/efeitos da radiação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Plastídeos/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos da radiação
9.
Front Plant Sci ; 8: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154576

RESUMO

Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.

10.
Development ; 143(7): 1108-19, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903506

RESUMO

Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Ensaio de Desvio de Mobilidade Eletroforética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Células-Tronco/citologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
11.
J Exp Bot ; 66(22): 6957-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26355147

RESUMO

Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations.


Assuntos
Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Plantas/metabolismo , Evolução Biológica , Ativação Enzimática , Estágios do Ciclo de Vida , RNA de Plantas/metabolismo
12.
Cell Mol Life Sci ; 71(16): 3119-37, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24714879

RESUMO

In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.


Assuntos
Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Plantas/genética , Genes de Plantas , Histonas/genética , Histonas/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Ativação Transcricional
13.
Proc Natl Acad Sci U S A ; 109(5): 1560-5, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22238427

RESUMO

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the "floral quartet" model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores , Proteínas de Domínio MADS/metabolismo , Arabidopsis/metabolismo , Cromatografia de Afinidade , Espectrometria de Massas
14.
EMBO J ; 30(18): 3812-22, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21829164

RESUMO

During dire conditions, the channelling of resources into reproduction ensures species preservation. This strategy of survival through the next generation is particularly important for plants that are unable to escape their environment but can produce hardy seeds. Here, we describe the multiple roles of OXIDATIVE STRESS 2 (OXS2) in maintaining vegetative growth, activating stress tolerance, or entering into stress-induced reproduction. In the absence of stress, OXS2 is cytoplasmic and is needed for vegetative growth; in its absence, the plant flowers earlier. Upon stress, OXS2 is nuclear and is needed for stress tolerance; in its absence, the plant is stress sensitive. OXS2 can activate its own gene and those of floral integrator genes, with direct binding to the floral integrator promoter SOC1. Stress-induced SOC1 expression and stress-induced flowering are impaired in mutants with defects in OXS2 and three of the four OXS2-like paralogues. The autoactivation of OXS2 may be a commensurate response to the stress intensity, stepping up from a strategy based on tolerating the effects of stress to one of escaping the stress via reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Citoplasma/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/deficiência , Dedos de Zinco
15.
Plant Mol Biol ; 75(6): 621-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21359553

RESUMO

Transgene escape, a major environmental and regulatory concern in transgenic crop cultivation, could be alleviated by removing transgenes from pollen, the most frequent vector for transgene flow. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). CinH recombinase recognized 119 bp of nucleic acid sequences, RS2, in pollen and excised the transgene flanked by the RS2 sites. In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment.


Assuntos
Códon/genética , Engenharia Genética/métodos , Pólen/genética , Recombinases/genética , Transgenes/genética , Southern Blotting , Citometria de Fluxo , Germinação/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética
16.
EMBO J ; 30(6): 1173-83, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21326210

RESUMO

Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria.


Assuntos
Apoptose , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Proteínas de Arabidopsis/genética , Temperatura Alta , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeos/genética , Folhas de Planta/metabolismo , Plântula/metabolismo
17.
Plant Methods ; 6: 27, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118545

RESUMO

BACKGROUND: Programmed cell death (PCD) is an essential process for the life cycle of all multicellular organisms. In higher plants however, relatively little is known about the cascade of genes and signalling molecules responsible for the initiation and execution of PCD. To aid with the discovery and analysis of plant PCD regulators, we have designed a novel cell death assay based on low cytosolic pH as a marker of PCD. RESULTS: The acidification that occurs in the cytosol during plant PCD was monitored by way of the extinction of YFP fluorescence at low pH. This fluorescence was recovered experimentally when bringing the intracellular pH back to 7, demonstrating that there was no protein degradation of YFP. Because it uses YFP, the assay is none-destructive, does not interfere with the PCD process and allows time-lapse studies to be carried out. In addition, changes of sub-cellular localisation can be visualised during PCD using the protein of interest fused to RFP. Coupled to a transient expression system, this pH-based assay can be used to functionally analyse genes involved in PCD, using point mutations or co-expressing PCD regulators. Transfecting mBAX and AtBI-1in onion epidermal cells showed that the pH shift is downstream of PCD suppression by AtBI-1. In addition, this method can be used to score PCD in tissues of stably transformed transgenic lines. As proof of principle, we show the example of YFP extinction during xylogenesis in Arabidopsis. This demonstrates that the assay is applicable to PCD studies in a variety of tissues. CONCLUSIONS: The observation that YFP fluorescence is lost during the plant PCD process provides a new tool to study the genetic regulation and cell biology of the process. In addition, plant cell biologists should make a note of this effect of PCD on YFP fluorescence to avoid misinterpretation of their data and to select a pH insensitive reporter if appropriate. This method represents an efficient and streamlined tool expected to bring insights on the process leading to the pH shift occurring during PCD.

18.
Plant J ; 57(4): 654-65, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18980652

RESUMO

A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemicals. OXS3 belongs to a family of proteins that share a highly conserved domain corresponding to a putative N-acetyltransferase or thioltransferase catalytic site. Mutations within this conserved domain abolished the ability of Arabidopsis thaliana OXS3 to enhance stress tolerance in S. pombe, indicating a role in stress tolerance for the presumptive catalytic domain. A stress-sensitive mutant of AtOXS3 and enhanced tolerance of overexpression lines support the role of OXS3 in stress tolerance. The expression of tagged B. juncea and A. thaliana OXS3 proteins in plant cells revealed a subnuclear speckling pattern related to the nucleosome in discrete parts of the chromatin. It is possible that OXS3 might act as a chromatin remodeling factor for the stress response.


Assuntos
Cádmio/metabolismo , Cromatina/metabolismo , Mostardeira/genética , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Dados de Sequência Molecular , Família Multigênica , Mutação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alinhamento de Sequência
19.
Transgenic Res ; 18(2): 237-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18704739

RESUMO

The small serine resolvase ParA from bacterial plasmids RK2 and RP4 catalyzes the recombination of two identical 133 bp recombination sites known as MRS. Previously, we reported that ParA is active in the fission yeast Schizosaccharomyces pombe. In this work, the parA recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis lines harboring a chromosomally integrated MRS-flanked target. The ParA recombinase excised the MRS-flanked DNA and the excision event was detected in subsequent generations in the absence of ParA, indicating germinal transmission of the excision event. The precise site-specific deletion by the ParA recombination system in planta demonstrates that the ParA recombinase can be used to remove transgenic DNA, such as selectable markers or other introduced transgenes that are no longer desired in the final product.


Assuntos
Arabidopsis/genética , Proteínas de Bactérias/genética , DNA/genética , Técnicas Genéticas , Genoma de Planta , Recombinases/genética , Sequência de Bases , Cromossomos de Plantas/genética , Modelos Genéticos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Recombinação Genética , Schizosaccharomyces/metabolismo
20.
Genetics ; 180(3): 1493-500, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791220

RESUMO

Gametes are produced in plants through mitotic divisions in the haploid gametophytes. We investigated the role of EXPORTIN1 (XPO1) genes during the development of both female and male gametophytes of Arabidopsis. Exportins exclude target proteins from the nucleus and are also part of a complex recruited at the kinetochores during mitosis. Here we show that double mutants in Arabidopsis XPO1A and XPO1B are gametophytic defective. In homozygous-heterozygous plants, 50% of the ovules were arrested at different stages according to the parental genotype. Double-mutant female gametophytes of xpo1a-3/+; xpo1b-1/xpo1b-1 plants failed to undergo all the mitotic divisions or failed to complete embryo sac maturation. Double-mutant female gametophytes of xpo1a-3/xpo1a-3; xpo1b-1/+ plants had normal mitotic divisions and fertilization occurred; in most of these embryo sacs the endosperm started to divide but an embryo failed to develop. Distortions in male transmission correlated with the occurrence of smaller pollen grains, poor pollen germination, and shorter pollen tubes. Our results show that mitotic divisions are possible without XPO1 during the haploid phase, but that XPO1 is crucial for the maternal-to-embryonic transition.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Células Germinativas/fisiologia , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Arabidopsis/genética , Gametogênese , Germinação , Mutagênese Insercional , Mutação/genética , Fenótipo , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , RNA de Plantas/genética , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...