Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 375, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670693

RESUMO

Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport.

2.
Phys Rev Lett ; 121(7): 073202, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169056

RESUMO

Coherent control of reactants remains a long-standing challenge in quantum chemistry. In particular, we have studied laser-induced molecular formation (photoassociation) in a Raman-dressed spin-orbit-coupled ^{87}Rb Bose-Einstein condensate, whose spin quantum state is a superposition of multiple bare spin components. In contrast to the notably different photoassociation-induced fractional atom losses observed for the bare spin components of a statistical mixture, a superposition state with a comparable spin composition displays the same fractional loss on every spin component. We interpret this as the superposition state itself undergoing photoassociation. For superposition states induced by a large Raman coupling and zero Raman detuning, we observe a nearly complete suppression of the photoassociation rate. This suppression is consistent with a model based upon quantum destructive interference between two photoassociation pathways for colliding atoms with different spin combinations. This model also explains the measured dependence of the photoassociation rate on the Raman detuning at a moderate Raman coupling. Our work thus suggests that preparing atoms in quantum superpositions may represent a powerful new technique to coherently control photochemical reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...