Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(14): 5626-5631, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31917506

RESUMO

An assessment of the C-H activation catalyst [(COD)Ir(IMes)(PPh3 )]PF6 (COD=1,5-cyclooctadiene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium-substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition-metal-catalyzed functionalization reactions of complex drug-type molecules as long as a C-H activation mechanism is involved.

2.
ChemistryOpen ; 8(9): 1183-1189, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31497473

RESUMO

The reactivity and selectivity of iridium(I) catalysed hydrogen isotope exchange (HIE) reactions can be varied by using wide range of reaction temperatures. Herein, we have done a detailed comparison study with common iridium(I) catalysts (1-6) which will help us to understand and optimize the approaches of either high selectivity or maximum deuterium incorporation. We have demonstrated that the temperature window for these studied iridium(I) catalysts is surprisingly very broad. This principle was further proven in some HIE reactions on complex drug molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA