Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(4): C1120-C1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223926

RESUMO

Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and ß subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Ratos , Animais , Ouabaína/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ligantes , Digoxina/farmacologia , Cardiotônicos/farmacologia , Hipertensão/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Sinalização do Cálcio , Sítios de Ligação
2.
Sci Signal ; 16(788): eadd6364, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279286

RESUMO

Brain swelling causes morbidity and mortality in various brain injuries and diseases but lacks effective treatments. Brain swelling is linked to the influx of water into perivascular astrocytes through channels called aquaporins. Water accumulation in astrocytes increases their volume, which contributes to brain swelling. Using a mouse model of severe ischemic stroke, we identified a potentially targetable mechanism that promoted the cell surface localization of aquaporin 4 (AQP4) in perivascular astrocytic endfeet, which completely ensheathe the brain's capillaries. Cerebral ischemia increased the abundance of the heteromeric cation channel SUR1-TRPM4 and of the Na+/Ca2+ exchanger NCX1 in the endfeet of perivascular astrocytes. The influx of Na+ through SUR1-TRPM4 induced Ca2+ transport into cells through NCX1 operating in reverse mode, thus raising the intra-endfoot concentration of Ca2+. This increase in Ca2+ stimulated calmodulin-dependent translocation of AQP4 to the plasma membrane and water influx, which led to cellular edema and brain swelling. Pharmacological inhibition or astrocyte-specific deletion of SUR1-TRPM4 or NCX1 reduced brain swelling and improved neurological function in mice to a similar extent as an AQP4 inhibitor and was independent of infarct size. Thus, channels in astrocyte endfeet could be targeted to reduce postischemic brain swelling in stroke patients.


Assuntos
Edema Encefálico , AVC Isquêmico , Canais de Cátion TRPM , Humanos , Edema Encefálico/genética , Edema Encefálico/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , AVC Isquêmico/metabolismo , Água/metabolismo , Cátions/metabolismo , Canais de Cátion TRPM/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 323(6): H1281-H1295, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367691

RESUMO

Cloning of the "Na+ pump" (Na+,K+-ATPase or NKA) and identification of a circulating ligand, endogenous ouabain (EO), a cardiotonic steroid (CTS), triggered seminal discoveries regarding EO and its NKA receptor in cardiovascular function and the pathophysiology of heart failure (HF) and hypertension. Cardiotonic digitalis preparations were a preferred treatment for HF for two centuries, but digoxin was only marginally effective in a large clinical trial (1997). This led to diminished digoxin use. Missing from the trial, however, was any consideration that endogenous CTS might influence digitalis' efficacy. Digoxin, at therapeutic concentrations, acutely inhibits NKA but, remarkably, antagonizes ouabain's action. Prolonged treatment with ouabain, but not digoxin, causes hypertension in rodents; in this model, digoxin lowers blood pressure (BP). Furthermore, NKA-bound ouabain and digoxin modulate different protein kinase signaling pathways and have disparate long-term cardiovascular effects. Reports of "brain ouabain" led to the elucidation of a new, slow neuromodulatory pathway in the brain; locally generated EO and the α2 NKA isoform help regulate sympathetic drive to the heart and vasculature. The roles of EO and α2 NKA have been studied by EO assay, ouabain-resistant mutation of α2 NKA, and immunoneutralization of EO with ouabain-binding Fab fragments. The NKA α2 CTS binding site and its endogenous ligand are required for BP elevation in many common hypertension models and full expression of cardiac remodeling and dysfunction following pressure overload or myocardial infarction. Understanding how endogenous CTS impact hypertension and HF pathophysiology and therapy should foster reconsideration of digoxin's therapeutic utility.


Assuntos
Glicosídeos Cardíacos , Digitalis , Insuficiência Cardíaca , Hipertensão , Ligantes , Insuficiência Cardíaca/tratamento farmacológico , Hipertensão/tratamento farmacológico
5.
Am J Physiol Heart Circ Physiol ; 320(1): H221-H237, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124883

RESUMO

Arterial smooth muscle Na+/Ca2+ exchanger-1 (SM-NCX1) promotes vasoconstriction or vasodilation by mediating, respectively, Ca2+ influx or efflux. In vivo, SM-NCX1 mediates net Ca2+ influx to help maintain myogenic tone (MT) and neuronally activated constriction. SM-NCX1-TG (overexpressing transgenic) mice have increased MT and mean blood pressure (MBP; +13.5 mmHg); SM-NCX1-KO (knockout) mice have reduced MT and MBP (-11.1 mmHg). Endothelium-dependent vasodilation (EDV) is often impaired in hypertension. We tested whether genetically engineered SM-NCX1 expression and consequent BP changes similarly alter EDV. Isolated, pressurized mesenteric resistance arteries with MT from SM-NCX1-TG and conditional SM-NCX1-KO mice, and femoral arteries in vivo from TG mice were studied. Acetylcholine (ACh)-dilated TG arteries with MT slightly more than control or KO arteries, implying that SM-NCX1 overexpression does not impair EDV. In preconstricted KO, but not TG mouse arteries, however, ACh- and bradykinin-triggered vasodilation was markedly attenuated. To circumvent the endothelium, phenylephrine-constricted resistance arteries were tested with Na-nitroprusside [SNP; nitric oxide (NO) donor] and cGMP. This endothelium-independent vasodilation was augmented in TG but attenuated in KO arteries that lack NCX1-mediated Ca2+ clearance. Baseline cytosolic Ca2+ ([Ca2+]cyt) was elevated in TG femoral arteries in vivo, supporting the high BP; furthermore, SNP-triggered [Ca2+]cyt decline and vasodilation were augmented as NO and cGMP promote myocyte polarization thereby enhancing NCX1-mediated Ca2+ efflux. The TG mouse data indicate that BP elevation does not attenuate endothelium-dependent vasodilation. Thus, in essential hypertension and many models the endothelial impairment that supports the hypertension apparently is not triggered by BP elevation but by extravascular mechanisms.NEW & NOTEWORTHY Endothelium-dependent, ACh-induced vasodilation (EDV) is attenuated, and arterial myocyte Na+/Ca2+ exchangers (NCX1) are upregulated in many forms of hypertension. Surprisingly, mildly hypertensive smooth muscle-specific (SM)-NCX1 transgenic mice exhibited modestly enhanced EDV and augmented endothelium-independent vasodilation (EIV). Conversely, mildly hypotensive SM-NCX1-knockout mice had greatly attenuated EIV. These adaptations help compensate for NCX1 expression-induced alterations in cytosolic Ca2+ and blood pressure (BP) and belie the view that elevated BP, itself, causes the endothelial dysregulation in hypertension.


Assuntos
Pressão Arterial , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Vasodilatação , Animais , Artérias/metabolismo , Sinalização do Cálcio , GMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trocador de Sódio e Cálcio/genética
6.
Cell Calcium ; 87: 102166, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32006802

RESUMO

Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.


Assuntos
Homeostase , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Humanos , Íons , Transdução de Sinais
7.
Cell Calcium ; 86: 102159, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31986323

RESUMO

In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.


Assuntos
Ouabaína/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Glicosídeos Cardíacos/metabolismo , Humanos
9.
J Gen Physiol ; 151(4): 407-416, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782603

RESUMO

All animal cells are surrounded by a flexible plasma membrane that is permeable to water and to small ions. Cells thus face a fundamental problem: the considerable tension that their membranes would experience if the osmotic influx of water, driven by the presence of impermeant intracellular ions, was left unopposed. The pivotal study that described the cell's remedy for this impending osmotic catastrophe-the "pump-leak mechanism" (PLM)-was published in the Journal of General Physiology by Tosteson and Hoffman in 1960. Their work revealed how the sodium pump stabilizes cell volume by eliminating the osmotic gradient. Here we describe the mechanistic basis of the PLM, trace the history of its discovery, and place it into the context of our current understanding.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Células/metabolismo , Canais Iônicos/fisiologia , Transporte de Íons/fisiologia , Animais , Membrana Celular/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 316(2): H298-H310, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461304

RESUMO

Plasma membrane Na+/Ca2+ exchanger-1 (NCX1) helps regulate the cytosolic Ca2+ concentration ([Ca2+]CYT) in arterial myocytes. NCX1 mediates both Ca2+ entry and exit and tends to promote net Ca2+ entry in partially constricted arteries. Mean blood pressure (telemetry) is elevated by ≈10 mmHg in transgenic (TG) mice that overexpress NCX1 specifically in smooth muscle. We tested the hypothesis that NCX1 overexpression mediates Ca2+ gain and elevated [Ca2+]CYT in exposed femoral arteries that also express the Ca2+ biosensor exogenous myosin light chain kinase. [Ca2+]CYT and the NCX1-dependent (SEA0400-sensitive) component, ≈15% of total basal constriction in controls, were increased in TG arteries, but constrictions to phenylephrine and ANG II were comparable in TG and control arteries. Normalized phenylephrine dose-response curves and constriction to 30 and 300 ng/kg iv ANG II were virtually identical in control and TG arteries. ANG II-evoked constrictions, superimposed on elevated basal tone, accounted for the larger blood pressure responses to ANG II in TG arteries. TG and control mouse arteries fit the same pCa-constriction relationship over a wide range of pCa (≈125-500 nM). Vasodilation to acetylcholine, normalized to passive diameter, was also comparable in TG and control arteries, implying normal endothelial function. TG artery Na+ nitroprusside (nitric oxide donor)-induced dilations were, however, shifted to lower Na+ nitroprusside concentrations, indicating that TG myocyte vasodilator mechanisms were augmented. Maximum arterial dilation was comparable in TG and control mice, although passive diameter was ≈6-7% smaller in TG mice. The changes in TG arteries were apparently largely functional rather than structural, despite the congenital hypertension. NEW & NOTEWORTHY Smooth muscle Na+/Ca2+ exchanger-1 transgene overexpression (TG mice) increases femoral artery basal cytosolic Ca2+ concentration ([Ca2+]CYT) and tone in vivo and raises blood pressure. Arterial constriction to phenylephrine and angiotensin II are normal but superimposed on the augmented basal [Ca2+]CYT and tone (constriction) in TG mouse arteries. Similar effects in resistance arteries would explain the elevated blood pressure. Acetylcholine-induced vasodilation is unimpaired, implying a normal endothelium, but TG arteries are hypersensitive to sodium nitroprusside.


Assuntos
Cálcio/metabolismo , Artéria Femoral/metabolismo , Músculo Liso Vascular/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Pressão Sanguínea , Artéria Femoral/citologia , Artéria Femoral/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Tono Muscular , Músculo Liso Vascular/fisiologia , Óxido Nítrico/metabolismo , Trocador de Sódio e Cálcio/genética , Vasodilatação
12.
Am J Physiol Cell Physiol ; 314(1): C3-C26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971835

RESUMO

Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na+ pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na+ pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na+ pumps and salt reabsorption. The hormone also inhibits arterial Na+ pumps, elevates myocyte Na+ and promotes Na/Ca exchanger-mediated Ca2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na+ pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na+ pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na+ pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.


Assuntos
Sistema Endócrino/metabolismo , Insuficiência Cardíaca/metabolismo , Hemodinâmica , Hipertensão/metabolismo , Ouabaína/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Pressão Sanguínea , Sinalização do Cálcio , Sistema Endócrino/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Natriurese , Transdução de Sinais , Cloreto de Sódio na Dieta/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
13.
Cardiovasc Res ; 114(2): 233-246, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126194

RESUMO

Aims: High salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt. Methods and results: In protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-ß-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta. Conclusion: These results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.


Assuntos
Angiotensina II , Pressão Arterial , Encéfalo/fisiopatologia , Sistema Cardiovascular/inervação , Hipertensão/fisiopatologia , Sistema Renina-Angiotensina , Cloreto de Sódio na Dieta , Sistema Nervoso Simpático/fisiopatologia , Aldosterona/sangue , Animais , Encéfalo/metabolismo , Cardenolídeos/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Saponinas/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo
14.
Endocr Connect ; 6(7): R131-R145, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28855243

RESUMO

In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.

15.
Am J Physiol Heart Circ Physiol ; 313(5): H919-H930, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733446

RESUMO

Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na+ pumps, however, have demonstrated that cardiac ouabain-sensitive α2-Na+ pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α2-Na+ pumps and in mice with cardiac-selective knockout or transgenic overexpression of α2-Na+ pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α2) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α2-ouabain-resistant (R) mice in which the normally ouabain-resistant α1-Na+ pumps were mutated to an ouabain-sensitive (S) form (α1S/Sα2R/R or "SWAP" vs. wild-type or α1R/R α2S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α2, are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na+ pump pathway in cardiovascular disease.


Assuntos
Cardiomegalia/fisiopatologia , Cardiotônicos/metabolismo , Hipertensão/fisiopatologia , Miocárdio/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/etiologia , Hipertensão/complicações , Camundongos , Engenharia de Proteínas , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética
18.
J Physiol ; 594(21): 6079-6103, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27350568

RESUMO

Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.


Assuntos
Sistema Cardiovascular/metabolismo , Hipertensão/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Angiotensinas/metabolismo , Animais , Sítios de Ligação , Cardiotônicos/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Humanos , Hipertensão/fisiopatologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
19.
Am J Physiol Heart Circ Physiol ; 309(5): H958-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209057

RESUMO

Arterial myocytes express α1-catalytic subunit isoform Na(+) pumps (75-80% of total), which are ouabain resistant in rodents, and high ouabain affinity α2-Na(+) pumps. Mice with globally reduced α2-pumps (but not α1-pumps), mice with mutant ouabain-resistant α2-pumps, and mice with a smooth muscle (SM)-specific α2-transgene (α2 (SM-Tg)) that induces overexpression all have altered blood pressure (BP) phenotypes. We generated α2 (SM-DN) mice with SM-specific α2 (not α1) reduction (>50%) using nonfunctional dominant negative (DN) α2. We compared α2 (SM-DN) and α2 (SM-Tg) mice to controls to determine how arterial SM α2-pumps affect vasoconstriction and BP. α2 (SM-DN) mice had elevated basal mean BP (mean BP by telemetry: 117 ± 4 vs. 106 ± 1 mmHg, n = 7/7, P < 0.01) and enhanced BP responses to chronic ANG II infusion (240 ng·kg(-1)·min(-1)) and high (6%) NaCl. Several arterial Ca(2+) transporters, including Na(+)/Ca(2+) exchanger 1 (NCX1) and sarcoplasmic reticulum and plasma membrane Ca(2+) pumps [sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and plasma membrane Ca(2+)-ATPase 1 (PMCA1)], were also reduced (>50%). α2 (SM-DN) mouse isolated small arteries had reduced myogenic reactivity, perhaps because of reduced Ca(2+) transporter expression. In contrast, α2 (SM-Tg) mouse aortas overexpressed α2 (>2-fold), NCX1, SERCA2, and PMCA1 (43). α2 (SM-Tg) mice had reduced basal mean BP (104 ± 1 vs. 109 ± 2 mmHg, n = 15/9, P < 0.02) and attenuated BP responses to chronic ANG II (300-400 ng·kg(-1)·min(-1)) with or without 2% NaCl but normal myogenic reactivity. NCX1 expression was inversely related to basal BP in SM-α2 engineered mice but was directly related in SM-NCX1 engineered mice. NCX1, which usually mediates arterial Ca(2+) entry, and α2-Na(+) pumps colocalize at plasma membrane-sarcoplasmic reticulum junctions and functionally couple via the local Na(+) gradient to help regulate cell Ca(2+). Altered Ca(2+) transporter expression in SM-α2 engineered mice apparently compensates to minimize Ca(2+) overload (α2 (SM-DN)) or depletion (α2 (SM-Tg)) and attenuate BP changes. In contrast, Ca(2+) transporter upregulation, observed in many rodent hypertension models, should enhance Ca(2+) entry and signaling and contribute significantly to BP elevation.


Assuntos
Artérias/metabolismo , Pressão Sanguínea , Músculo Liso Vascular/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Angiotensina II/farmacologia , Animais , Artérias/fisiologia , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...