Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 14(5): 460-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19487768

RESUMO

Since the introduction of lithotripsy kidney stone therapy, Focused Acoustics and its properties have been thoroughly utilized in medicine and exploration. More recently, Compound Management is exploring its applications and benefits to sample integrity. There are 2 forms of Focused Acoustics: Acoustic Droplet Ejection and Adaptive Focused Acoustics, which work by emitting high-powered acoustic waves through water toward a focused point. This focused power results in noncontact plate-to-plate sample transfer or sample dissolution, respectively. For the purposes of this article, only Adaptive Focused Acoustics will be addressed. Adaptive Focused Acoustics uses high-powered acoustic waves to mix, homogenize, dissolve, and thaw samples. It facilitates transferable samples through noncontact, closed-container, isothermal mixing. Experimental results show significantly reduced mixing times, limited degradation, and ideal use for heat-sensitive compounds. Upon implementation, acoustic dissolution has reduced the number of samples requiring longer mixing times as well as reducing the number impacted by incomplete compound dissolution. It has also helped in increasing the overall sample concentration from 6 to 8 mM to 8 to 10 mM by ensuring complete compound solubilization. The application of Adaptive Focused Acoustics, however, cannot be applied to all Compound Management processes, such as sample thawing and low-volume sample reconstitution. This article will go on to describe the areas where Adaptive Focused Acoustics adds value as well as areas in which it has shown no clear benefit.


Assuntos
Descoberta de Drogas/instrumentação , Som , Descoberta de Drogas/métodos , Humanos , Preparações Farmacêuticas/química , Solubilidade
2.
J Biomol Screen ; 14(5): 547-56, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19470717

RESUMO

It is common knowledge in the pharmaceutical industry that the quality of a company's compound collection has a major influence on the success of biological screening in drug discovery programs. DMSO is the widely accepted solvent of choice for storage of compounds, despite the hygroscopic nature of the solvent, which can lead to stability issues. Other factors that can affect compound stability (e.g., degradation, precipitation) include concentration of compound, intrinsic compound stability, presence of reactive contaminants, storage format-related factors (vessel, sealing, etc.), storage conditions (temperature, humidity, freeze-thaw technique and cycles, etc.), and storage time. To define the best practice for the storage and handling of solution samples, GlaxoSmithKline has undertaken stability experiments over more than a decade, initially to support the implementation of new automated liquid stores (ALS) and, subsequently, to enhance storage and use of compounds in solution through an understanding of compound degradation under storage and assay conditions. The experiments described used a number of technologies, including hyphenated liquid chromatography, electrospray mass spectrometry, flow chemiluminescence nitrogen detection, nuclear magnetic resonance, and Karl Fischer titration.


Assuntos
Indústria Farmacêutica/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Controle de Qualidade , Temperatura , Fatores de Tempo
3.
Anal Chem ; 77(14): 4354-65, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16013846

RESUMO

There is an urgent need for detection technologies that enable accurate and precise quantification of solutions containing small organic molecules in a manner that is rapid, cheap, non-labor-intensive, readily automated, and without a requirement for specific analyte standards. We provide a theoretical analysis that predicts that the logarithmic nature of the working domain of the evaporative light-scattering detector (ELSD) will normally bias toward underestimation of chromatographically resolved impurities, resulting in an overestimation of analyte purity. This analysis is confirmed by experiments with flow injection analysis (FIA) and gradient reversed-phase high performance liquid chromatography (RP-HPLC). Quantification is further compromised by the dependence of response parameters on the matrix composition and hence on the retention time of the analyte. Attempts were made to ameliorate these problems by using the response surface of a single compound to calibrate throughout the HPLC gradient. A chemiluminescent nitrogen detector (CLND) was also used in a similar manner, and the performance of the two techniques were compared against those of each other and that of a reference standard technique. A protocol for this purpose was developed using proton nuclear magnetic resonance (1H NMR) and the ERETIC method to enable quantification by integrating proton signals. The double-blind comparison exercise confirmed molar nitrogen CLND response to be sufficiently stable and robust across a methanol gradient to be used with a single external nitrogenous calibrant to quantify nitrogen-containing compounds of known molecular formula. The performance of HPLC-CLND was very similar to that of NMR, while that of HPLC-ELSD was seen to be significantly worse, showing it to be unsuitable for the purpose of single-calibrant quantification. We report details and experience of our use of RP-HPLC-CLND-MS to characterize and quantify small amounts of solutions of novel compounds at nominal levels of 10mM in microtiter plate (MTP) format.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...